Skip to main content

Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability

  • Oliver T. Schmidt (a1), Aaron Towne (a1) (a2), Tim Colonius (a1), André V. G. Cavalieri (a3), Peter Jordan (a4) and Guillaume A. Brès (a5)...

Coherent features of a turbulent Mach 0.9, Reynolds number $10^{6}$ jet are educed from a high-fidelity large eddy simulation. Besides the well-known Kelvin–Helmholtz instabilities of the shear layer, a new class of trapped acoustic waves is identified in the potential core. A global linear stability analysis based on the turbulent mean flow is conducted. The trapped acoustic waves form branches of discrete eigenvalues in the global spectrum, and the corresponding global modes accurately match the educed structures. Discrete trapped acoustic modes occur in a hierarchy determined by their radial and axial order. A local dispersion relation is constructed from the global modes and found to agree favourably with an empirical dispersion relation educed from the simulation data. The product between direct and adjoint modes is then used to isolate the trapped waves. Under certain conditions, resonance in the form of a beating occurs between trapped acoustic waves of positive and negative group velocities. This resonance explains why the trapped modes are prominently observed in the simulation and as tones in previous experimental studies. In the past, these tones were attributed to external factors. Here, we show that they are an intrinsic feature of high-subsonic jets that can be unambiguously identified by a global linear stability analysis.

Corresponding author
Email address for correspondence:
Hide All
Baqui, Y. B., Agarwal, A., Cavalieri, A. V. G. & Sinayoko, S. 2015 A coherence-matched linear source mechanism for subsonic jet noise. J. Fluid Mech. 776, 235267.
Bodony, D. J. & Lele, S. K. 2008 Current status of jet noise predictions using large-eddy simulation. AIAA J. 46 (2), 364380.
Brès, G. A., Ham, F. E., Nichols, J. W. & Lele, S. K. 2017 Unstructured large-eddy simulations of supersonic jets. AIAA J. 55 (4), 11641184.
Brès, G. A., Jaunet, V., Le Rallic, M., Jordan, P., Colonius, T. & Lele, S. K.2015 Large eddy simulation for jet noise: the importance of getting the boundary layer right. AIAA Paper 2015-3535.
Brès, G. A., Jaunet, V., Le Rallic, M., Jordan, P., Towne, A., Schmidt, O. T., Colonius, T., Cavalieri, A. V. G. & Lele, S. K. 2016 Large eddy simulation for jet noise: azimuthal decomposition and intermittency of the radiated sound. In 22nd AIAA/CEAS Aeroacoustics Conference, American Institute of Aeronautics and Astronautics (AIAA).
Brès, G. A., Jordan, P., Colonius, T., Le Rallic, M., Jaunet, V. & Lele, S. K. 2014 Large eddy simulation of a Mach 0.9 turbulent jet. In Center for Turbulence Research Proceedings of the Summer Program, p. 221.
Briggs, R. J. 1964 Electron-stream Interaction with Plasmas. MIT Press.
Cavalieri, A. V. G, Rodríguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.
Chandler, G. J., Juniper, M. P., Nichols, J. W. & Schmid, P. J. 2012 Adjoint algorithms for the Navier–Stokes equations in the low mach number limit. J. Comput. Phys. 231 (4), 19001916.
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.
Chu, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (Part I). Acta Mechanica 1 (3), 215234.
Crighton, D. G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77 (02), 397413.
Crouch, J. D., Garbaruk, A. & Magidov, D. 2007 Predicting the onset of flow unsteadiness based on global instability. J. Comput. Phys. 224 (2), 924940.
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48 (03), 547591.
Farrell, B. F. & Ioannou, P. J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids A 5 (11), 26002609.
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013a Modal and transient dynamics of jet flows. Phys. Fluids 25 (4), 044103.
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013b The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189202.
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.
Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.
Jeun, J., Nichols, J. W. & Jovanović, M. R. 2016 Input–output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.
Mattsson, K. & Nordström, J. 2004 Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199 (2), 503540.
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.
Meliga, P., Pujals, G. & Serre, É. 2012 Sensitivity of 2-d turbulent flow past a d-shaped cylinder using global stability. Phys. Fluids 24 (6), 061701.
Mettot, C., Sipp, D. & Bézard, H. 2014 Quasi-laminar stability and sensitivity analyses for turbulent flows: prediction of low-frequency unsteadiness and passive control. Phys. Fluids 26 (4), 045112.
Michalke, A. 1971 Instability of a compressible circular free jet with consideration of the influence of the jet boundary layer thickness. Z. Flugwiss. 19 (8), 319328.
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.
Mohseni, K. & Colonius, T. 2000 Numerical treatment of polar coordinate singularities. J. Comput. Phys. 157 (2), 787795.
Mollo-Christensen, E.1963 Measurements of near field pressure of subsonic jets. Tech. Rep. Advis. Group Aeronaut. Res. Dev.
Nichols, J. W. & Lele, S. K. 2011 Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225241.
Qadri, U. A. & Schmid, P. J. 2017 Effect of nonlinearities on the frequency response of a round jet. Phys. Rev. Fluids 2, 043902.
Semeraro, O., Lesshafft, L., Jaunet, V. & Jordan, P. 2016 Modeling of coherent structures in a turbulent jet as global linear instability wavepackets: theory and experiment. Intl J. Heat Fluid Flow 62, 2432.
Sipp, D., Marquet, O., Meliga, P. & Barbagallo, A. 2010 Dynamics and control of global instabilities in open-flows: a linearized approach. Appl. Mech. Rev. 63 (3), 030801.
Suzuki, T. & Colonius, T. 2006 Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565 (1), 197226.
Tam, C. K. W. & Ahuja, K. K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 6787.
Tam, C. K. W. & Hu, F. Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.
Tissot, G., Zhang, M., Lajús, F. C., Cavalieri, A. V. G. & Jordan, P. 2017 Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer. J. Fluid Mech. 811, 95137.
Towne, A., Cavalieri, A. V. G., Jordan, P., Colonius, T., Schmidt, O. T., Jaunet, V. & Brès, G. A. 2017 Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 11131152.
Towne, A., Colonius, T., Jordan, P., Cavalieri, A. V. G. & Brès, G. A. 2015 Stochastic and nonlinear forcing of wavepackets in a mach 0.9 jet. In 21st AIAA/CEAS Aeroacoustics Conference, p. 2217.
Yen, C. C. & Messersmith, N. L. 1998 Application of parabolized stability equations to the prediction of jet instabilities. AIAA J. 36 (8), 15411544.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed