Skip to main content
×
Home

Weakly nonlinear non-symmetric gravity waves on water of finite depth

  • J. A. Zufiria (a1)
Abstract

A weakly nonlinear Hamiltonian model for two-dimensional irrotational waves on water of finite depth is developed. The truncated model is used to study families of periodic travelling waves of permanent form. It is shown that non-symmetric periodic waves exist, which appear via spontaneous symmetry-breaking bifurcations from symmetric waves.

Copyright
References
Hide All
Abraham, R. & Marsden, J. E. 1978 Fundations of Mechanics (2nd edn). Massachusetts: Benjamin/Cummings.
Arnol'D, V. I.1978 Mathematical Methods of Classical Mechanics. Springer.
Arnol'D, V. I. & Avez, A.1968 Ergodic Problems of Classical Mechanics. New York: Benjamin.
Benjamin, T. B. 1984 Impulse, force and variational principles. IMA J. of Appl. Maths 32, 368.
Broer, L. J. F. 1974 On the Hamiltonian theory of surface waves. Appl. Sci. Res. 29, 430446.
Chen, B. & Saffman, P. G. 1980 Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Maths 62, 121.
Cokelet, E. D. 1977 Steep gravity waves in water of arbitrary uniform depth. Phil. Trans. R. Soc. Lond. A 286, 183230.
Doedel, E. J. & Kernevez, J. P. 1986 Software for continuation problems in ordinary differential equations with applications. Caltech. Applied Mathematics Rep.
Finn, J. M. 1974 Integral canonical transformations and normal forms for mirror machine Hamiltonians. Doctoral thesis, Appendix B, p 242. University of Maryland.
Goldstein, H. 1980 Classical Mechanics (2nd edn). Addison Wesley.
Grant, M. A. 1973 The singularity at the crest of a finite amplitude progressive Stokes wave. J. Fluid Mech. 59, 257262.
Green, J. M., MacKay, R. S., Vivaldi, F. & Feigenbaum, M. J. 1981 Universal behavior in families of area-preserving maps. Physica 3D, 468–486.
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer.
Hunter, D. H. & Vanden-Broeck, J. M. 1983 Solitary and periodic gravity-capillary waves of finite amplitude. J. Fluid Mech. 134, 205219.
Longuet-Higgins, M. S. 1985 Bifurcation in gravity waves. J. Fluid Mech. 151, 457475.
Longuet-Higgins, M. S. & Fox, M. J. H. 1977 Theory of the almost-highest wave: the inner solution. J. Fluid Mech. 80, 721741.
Longuet-Higgins, M. S. & Fox, M. J. H. 1978 Theory of the almost-highest wave. Part 2. Matching and analytic extension. J. Fluid Mech. 85, 769786.
Mackay, R. S. & Saffman, P. G. 1986 Stability of water waves. Proc. R. Soc. Lond. A 406, 115125.
Miles, J. W. 1977 On Hamilton's principle for surface waves. J. Fluid Mech. 83, 153158.
Norman, A. C. 1974 Expansions for the shape of maximum amplitude Stokes waves. J. Fluid Mech. 66, 261265.
Olfe, D. B. & Rottman, J. W. 1980 Some new highest-wave solutions for deep-water waves of permanent form. J. Fluid Mech. 100, 801810.
Radder, A. C. & Dingemans, M. W. 1985 Canonical equations for almost periodic, weakly nonlinear gravity waves. Wave Motion 7, 473485.
Rimmer, R. 1978 Symmetry and bifurcation of fixed points of area preserving maps. J. Diff. Equns 29, 329344.
Saffman, P. G. 1980 Long wavelength bifurcation of gravity waves on deep water. J. Fluid Mech. 101, 567581.
Saffman, P. G. 1985 The superharmonic instability of finite-amplitude water waves. J. Fluid Mech. 159, 169174.
Sattinger, D. H. 1980 Bifurcation and symmetry breaking in applied mathematics. Bull. Am. Maths Soc. 3, 779819.
Sattinger, D. H. 1983 Branching in the presence of symmetry. CBMS-NSF Reg. Conf. in Appl. Maths SIAM, Philadelphia.
Stokes, G. G. 1849 Trans. Camb. Phil. Soc. 8, 441.
Tanaka, M. 1985a The stability of steep gravity waves. J. Fluid Mech. 156, 281289.
Tanaka, M. 1985b The stability of solitary waves. Phys. Fluids (to appear).
Vanden-Broeck, J. M. 1983 Some new gravity waves in water of finite depth. Phys. Fluids 26, 23852387.
Whitham, G. B. 1974 Linear and Nonlinear waves. Wiley-Interscience.
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of deep fluid. J. Appl. Mech. Tech. Phys. 2, 190194.
Zufiria, J. A. & Saffman, I. G. 1985 The superharmonic instability of finite amplitude surface waves on water of finite depth. Stud. Appl. Maths 74, 259266.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 71 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.