Skip to main content

A competitive algorithm for managing sharing in the distributed execution of functional programs

  • GAD AHARONI (a1), AMNON BARAK (a1) and AMIR RONEN (a1)
    • Published online: 01 July 1997

Execution of functional programs on distributed-memory multiprocessors gives rise to the problem of evaluating expressions that are shared between several Processing Elements (PEs). One of the main difficulties of solving this problem is that, for a given shared expression, it is not known in advance whether realizing the sharing is more cost effective than duplicating its evaluation. Realizing the sharing requires coordination between the sharing PEs to ensure that the shared expression is evaluated only once. This coordination involves relatively high communication costs, and is therefore only worthwhile when the shared expressions require much computation time to evaluate. In contrast, when the shared expression is not computation intensive, it is more cost effective to duplicate the evaluation, and thus avoid the communication overhead costs. This dilemma of deciding whether to duplicate the work or to realize the sharing stems from the unknown computation time that is required to evaluate a shared expression. This computation time is difficult to estimate due to unknown run-time evolution of loops and recursion that may be part of the expression. This paper presents an on-line (run-time) algorithm that decides which of the expressions that are shared between several PEs should be evaluated only once, and which expressions should be evaluated locally by each sharing PE. By applying competitive considerations, the algorithm manages to exploit sharing of computation-intensive expressions, while it duplicates the evaluation of expressions that require little time to compute. The algorithm accomplishes this goal even though it has no a priori knowledge of the amount of computation that is required to evaluate the shared expression. We show that this algorithm is competitive with a hypothetical optimal off-line algorithm, which does have such knowledge, and we prove that the algorithm is deadlock free. Furthermore, this algorithm does not require any programmer intervention, it has low overhead, and it is designed to run on a wide variety of distributed systems.

Hide All
This research was supported in part by the Basic Research Foundation administered by the Israeli Academy of Science and Humanities and in part by the Ministry of Science and the Art.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Functional Programming
  • ISSN: 0956-7968
  • EISSN: 1469-7653
  • URL: /core/journals/journal-of-functional-programming
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 113 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th January 2018. This data will be updated every 24 hours.