Skip to main content Accessibility help

A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden

  • Regine Hock (a1) (a2) and Björn Holmgren (a3)


A grid-based surface energy-balance mass-balance model has been developed to simulate snow- and ice melt in mountainous regions with an hourly resolution. The model is applied to Storglaciären, a valley glacier in Sweden, using a 30 m resolution digital elevation model. Emphasis is directed towards computing the radiation components. These are modelled individually, considering the effects of slope angle, aspect and effective horizon. A new parameterization for snow albedo is suggested, modifying the albedo of the preceding hour as a function of time after snowfall, air temperature and cloudiness. The model is used to provide the meltwater input for discharge modelling and to assess the influence of the individual components on melt. Results are validated by means of observed melt rates, patterns of snow-line retreat and proglacial discharge. In general, simulations are in good agreement with observations. In particular, the diurnal and seasonal fluctuations of discharge are simulated remarkably well.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden
      Available formats



Hide All
Ambach, W. 1986. Nomographs for the determination of meltwater from snow and ice surfaces. Berichte des naturwissenschaftlich- medizinischen Vereins in Innsbruck, 73, 7-15.
Andreas, E.L. 1987. A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorol., 38(1-2), 159-184.
Arendt, A. 1999. Approaches to modelling the surface albedo of a high Arctic glacier. Geogr. Ann., 81A(4), 477-487.
Arnold, N.S., Willis, I.C., Sharp, M.J., Richards, K.S. and Lawson, W.J.. 1996. A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier dArolla, Valais, Switzerland. J. Glaciol., 42(140), 77-89.
Beljaars, A. and Holtslag, A.. 1991. Flux parameterization over land surface for atmospheric models. J. Appl. Meteorol., 30(3), 327-341.
Bloschl, G., Kirnbauer, R. and Gutknecht, D.. 1991. Distributed snowmelt simulations in an Alpine catchment. I. Model evaluation on the basis of snow cover patterns. Water Resour. Res., 27(12), 3171-3179.
Braithwaite, R.J. 1995. Aerodynamic stability and turbulent sensible-heat flux over a melting ice surface, the Greenland ice sheet. J. Glaciol., 41(139), 562-571.
Braithwaite, R.J. and Zhang, Y.. 2000. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. J. Glaciol., 46(152), 7-14.
Braithwaite, R.J., Konzelmann, T., Marty, C. and Olesen, O.B.. 1998. Reconnaissance study of glacier energy balance in North Greenland, 1993-94. J. Glaciol., 44(147), 239-247.
Braun, M. and Hock, R.. 2004. Spatially distributed surface energy balance and ablation modelling on the ice cap of King George Island (Antarctica). Global Planet. Change, 42(1), 45-58.
Brock, B.W., Willis, I.C. and Sharp, M.J.. 2000a. Measurement and parameterization of albedo variations at Haut Glacier dArolla, Switzerland. J. Glaciol., 46(155), 675-688.
Brock, B.W., Willis, I.C., Sharp, M.J. and Arnold, N.S.. 2000b. Modelling seasonal and spatial variations in the surface energy balance of Haut Glacier dArolla, Switzerland. Ann. Glaciol., 31, 53-62.
Collares-Pereira, M. and Rabl, A.. 1979. The average distribution of solar radiation correlations between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy, 22(2), 155-164.
Cutler, P.M. and Munro, D.S.. 1996. Visible and near-infrared reflectivity during the ablation period on Peyto Glacier, Alberta, Canada. J. Glaciol., 42(141), 333-340.
Dozier, J. 1980. A clear-sky spectral solar radiation model for snow- covered mountainous terrain. Water Resour. Res., 16(4), 709-718.
Escher-Vetter, H. 1985. Energy balance calculations for the ablation period 1982 at Vernagtferner, Oetztal Alps. Ann. Glaciol., 6, 158-160.
Escher-Vetter, H. 2000. Modelling meltwater production with a distributed energy balance method and runoff using a linear reservoir approach: results from Vernagtferner, Oetztal Alps, for the ablation seasons 1992 to 1995. Z. Gletscherkd. Glazialgeol., 36, 119-150.
Fierz, C., Pluss, C. and Martin, E.. 1997. Modelling the snow cover in a complex Alpine topography. Ann. Glaciol., 25, 312-316.
Fohn, P.M.B. 1973. Short-term snow melt and ablation derived from heat- and mass-balance measurements. J. Glaciol., 12(65), 275-289.
Forrer, J. and Rotach, M.. 1997. On the turbulence structure in the stable boundary layer over the Greenland ice sheet. Boundary- Layer Meteorol., 85(1), 111-136.
Frohlich, C. 1993. Changes of total solar irradiance. In McBean, G.A. and Hantel, M., eds. Interactions between global climate subsystems: the legacy of Hann. Washington, DC, American Geophysical Union, 123-129.
Funk, M. 1985. Raumliche Verteilung der Massenbilanz auf dem Rhonegletscher und ihre Beziehungzu Klimaelementen. Zurcher Geogr. Schr. 24.
Garnier, B. and Ohmura, A.. 1968. A method of calculating the direct shortwave radiation income on slopes. J. Appl. Meteorol., 7(10), 796-800.
Grainger, M.E. and Lister, H.. 1966. Wind speed, stability and eddy viscosity over melting ice surfaces. J. Glaciol., 6(43), 101-127.
Greuell, J.W. and Konzelmann, T.. 1994. Numerical modeling of the energy balance and the englacial temperature of the Greenland ice sheet: calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.). Global Planet. Change, 9(1-2), 91-114.
Halldin, S. and Lindroth, A.. 1992. Errors in net radiometry: comparison of six radiometer designs. J. Atmos. Oceanic Technol., 9(6), 762-783.
Harding, R.J. and 7 others. 1989. Energy and mass balance studies in the firn area of the Hintereisferner. In Oerlemans, J., ed. Glacier fluctuations and climatic change. Dordrecht, etc., Kluwer Academic Publishers, 325-341.
Hay, J.E. and Fitzharris, B.B.. 1988. The synoptic climatology of ablation on a New Zealand glacier. J. Climatol., 8, 201-215.
Hieltala, M. 1989. En utvardering av areella nederbordsmetoder och matarplaceringar i Tarfaladalen. (Masters thesis, Stockholm University.)
Hock, R. 2003. Temperature index melt modelling in mountain areas. J. Hydrol., 282(1-4), 104-115.
Hock, R. 2005. Glacier melt: a review on processes and their modelling. Prog. Phys. Geogr., 29(3), 1-30.
Hock, R. and Holmgren, B.. 1996. Some aspects of energy balance and ablation of Storglaciären, northern Sweden. Geogr. Ann., 78A(2-3), 121-131.
Hock, R. and Jensen, H.. 1999. Application of kriging interpolation for glacier mass balance computations. Geogr. Ann., 81A(4), 611-619.
Hock, R. and Noetzli, C.. 1997. Areal melt and discharge modelling of Storglaciären, Sweden. Ann. Glaciol., 24, 211-216.
Holmgren, B. 1971. Climate and energy exchange on a sub-polar ice cap in summer. Arctic Institute of North America Devon Island Expedition 1961-1963. Parts A-E. Uppsala, Uppsala Universitet. Meteorologiska Institutionen. (Meddelande 107-112.)
Holmlund, P. and Jansson, P.. 1999. The Tarfala mass balance programme. Geogr. Ann., 81A(4), 621-631.
Holmlund, P. and Schytt, V.. 1987. Glaciarerna i Tarfala. (Scale 1 : 20 000.) Stockholm, University of Stockholm. Department of Physical Geography.
Jonsell, U., Hock, R. and Holmgren, B.. 2003. Spatial and temporal variations in albedo on Storglaciären, Sweden. J. Glaciol., 49(164), 59-68.
Kirnbauer, R., Bloschl, G. and Gutknecht, D.. 1994. Entering the era of distributed snow models. Nord. Hydrol., 25(1-2), 1-24.
Klok, E.J.L. and Oerlemans, J.. 2002. Model study of the spatial distribution of the energy and mass balance of Morteratsch- gletscher, Switzerland. J. Glaciol., 48(163), 505-518.
Kondratev, K.Ya. 1969. Radiation of the atmosphere. New York, Academic Press.
Konya, K., Matsumoto, T. and Naruse, R.. 2004. Surface heat balance and spatial distributed ablation modelling on Koryto Glacier, Kamchatka Peninsula, Russia. Geogr. Ann., 86A(4), 337-348.
Konzelmann, T. and Braithwaite, R.J.. 1995. Variations of ablation, albedo and energy balance at the margin of the Greenland ice sheet, Kronprins Christian Land, eastern north Greenland. J. Glaciol., 41(137), 174-182.
Konzelmann, T. and Ohmura, A.. 1995. Radiative fluxes and their impact on the energy balance of the Greenland ice sheet. J. Glaciol., 41(139), 490-502.
Liu, B.H.Y. and Jordan, R.C.. 1960. The interrelationship and characteristic of direct, diffuse and total solar radiation. Solar Energy, 4(3), 1-19.
Martin, E. and Lejeune, Y.. 1998. Turbulent fluxes above the snow surface. Ann. Glaciol., 26, 179-183.
Moore, R.D. 1983. On the use of bulk aerodynamic formulae over melting snow. Nord. Hydrol., 14(4), 193-206.
Morris, E.M. 1982. Sensitivity of the European hydrological system snow models. International Association of Hydrological Sciences Publication 138 (Symposium at Exeter 1982 – Hydrological Aspects of Alpine and High Mountain Areas), 221-231.
Müller, G. and Ohmura, A.. 1993. Radiation annual report ETH, No.2, 1990 and 1991. Zurcher Geogr. Schr. 52.
Munro, D.S. 1990. Comparison of melt energy computations and ablatometer measurements on melting ice and snow. Arct. Alp. Res., 22(2), 153-162.
Nash, J.E. and Sutcliffe, J.V.. 1970. River flow forecasting through conceptual models. Part 1. A discussion of principles. J. Hydrol., 10(3), 282-290.
Oerlemans, J. 2000. Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance. J. Glaciol., 46(155), 571-579.
Ohmura, A., Kasser, P. and Funk, M.. 1992. Climate at the equilibrium line of glaciers. J. Glaciol., 38(130), 397-411.
Ohta, T. 1994. A distributed snowmelt prediction model in mountain areas based on an energy balance method. Ann. Glaciol., 19, 107-113.
Oke, T.R. 1987. Boundary layer climates. Second edition. London, Methuen; New York, Routledge Press.
Orvig, S. 1954. Glacial-meteorological observations on icecaps in Baffin Island. Geogr. Ann., 36(3-4), 197-318.
Paulson, C.A. 1970. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol., 9, 857-861.
Pettersson, R., Jansson, P. and Holmlund, P.. 2003. Cold surface layer thinning on Storglaciären, Sweden, observed by repeated ground penetrating radar surveys. J. Geophys. Res., 108(F1), 6004. (doi: 10.1029/2003JF000024.)
Pluss, C. and Mazzoni, R.. 1994. The role of turbulent heat fluxes in the energy balance of high Alpine snow cover. Nord. Hydrol., 25(1-2), 25-38.
Pluss, C. and Ohmura, A.. 1997. Longwave radiation on snow- covered mountainous surfaces. J. Appl. Meteorol., 36(6), 818-824.
Rohrer, M. 1989. Determination of the transition air temperature from snow to rain and intensity of precipitation. In Sevruk, B., ed. Instruments and observing methods. Geneva, World Meteorological Organization, 475-482. (WMO/TD 328, Technical Report 48.)
Sellers, W.D. 1965. Physical climatology. Chicago, University of Chicago Press.
Sicart, J.-E. 2002. Contribution a letude des lux denergie, du bilan de masse et du debit du fonte dun glacier tropical: le Zongo, bolivie. (PhD thesis, Universite de Paris.)
Streten, N.A. and Wendler, G.. 1967. Some observations of Alaskan glacier winds in midsummer. Arctic, 20(2), 98-102.
Ujihashi, Y., Takase, N., Ishida, H. and Hibobe, E.. 1994. Distributed snow cover model for a mountainous basin. International Association of Hydrological Sciences Publication 223 (Symposium at Yokohama 1993 – Snow and Ice Covers: Interactions with the Atmosphere and Ecosystems), 153-162.
United States Army Corps of Engineers (USACE). 1956. Snow hydrology: summary report of the snow investigations. Portland, OR, US Army Corps of Engineers. North Pacific Division.
Van den Broeke, M. 1996. Characteristics of the lower ablation zone of the West Greenland ice sheet for energy-balance modelling. Ann. Glaciol., 23, 160-166.
Van de Wal, R.S.W., Oerlemans, J. and van der Hage, J.C.. 1992. A study of ablation variations on the tongue of Hintereisferner, Austrian Alps. J. Glaciol., 38(130), 319-324.
Wendler, G. and Weller, G.. 1974. A heat-balance study on McCall Glacier, Brooks Range, Alaska: a contribution to the International Hydrological Decade. J. Glaciol., 13(67), 13-26.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed