Skip to main content
×
Home
    • Aa
    • Aa

Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model

  • J.M. Van Wessem (a1), C.H. Reijmer (a1), M. Morlighem (a2), J. Mouginot (a2), E. Rignot (a2), B. Medley (a3), I. Joughin (a4), B. Wouters (a5), M.A. Depoorter (a5), J.L. Bamber (a5), J.T.M. Lenaerts (a5), W.J. Van De Berg (a1), M.R. Van Den Broeke (a1) and E. Van Meijgaard (a6)...
Abstract
Abstract

This study evaluates the impact of a recent upgrade in the physics package of the regional atmospheric climate model RACMO2 on the simulated surface mass balance (SMB) of the Antarctic ice sheet. The modelled SMB increases, in particular over the grounded ice sheet of East Antarctica (+44 Gt a–1), with a small change in West Antarctica. This mainly results from an increase in precipitation, which is explained by changes in the cloud microphysics, including a new parameterization for ice cloud supersaturation, and changes in large-scale circulation patterns, which alter topographically forced precipitation. The spatial changes in SMB are evaluated using 3234 in situ SMB observations and ice-balance velocities, and the temporal variability using GRACE satellite retrievals. The in situ observations and balance velocities show a clear improvement of the spatial representation of the SMB in the interior of East Antarctica, which has become considerably wetter. No improvements are seen for West Antarctica and the coastal regions. A comparison of model SMB temporal variability with GRACE satellite retrievals shows no significant change in performance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model
      Available formats
      ×
Copyright
References
Hide All
BamberJL, HardyRJ and JoughinI (2000) An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry. J. Glaciol., 46(152), 6774 (doi: 10.3189/172756500781833412)
BorsaAA, MoholdtG, FrickerHA and BruntKM (2014) A range correction for ICESat and its potential impact on ice-sheet mass balance studies. Cryosphere, 8(2), 345357 (doi: 10.5194/tc-8–345–2014)
BromwichDH, GuoZ, BaiL and ChenQ (2004) Modelled Antarctic precipitation. Part I: spatial and temporal variability. J. Climate, 17(3), 427447 (doi: 10.1175/1520–0442(2004)017<0427: MAPPIS>2.0.CO;2)
DeeDP and 35 others (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137(656), 553597 (doi: 10.1002/qj.828)
EttemaJ, Van den BroekeMR, Van MeijgaardE, Van de BergWJ, BoxJE and SteffenK (2010) Climate of the Greenland ice sheet using a high-resolution climate model: Part 1: evaluation. Cryosphere, 4(4), 511527 (doi: 10.5194/tc-4–511–2010)
European Centre for Medium-Range Weather Forecasts (ECMWF) (2008) IFS Documentation – CY33R1. Part IV: physical processes. European Centre for Medium-Range Weather Forecasts, Reading
FavierV and 8 others (2013) An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere, 7(2), 583597 (doi: 10.5194/tc-7–583–2013)
FettweisX, TedescoM, Van den BroekeM and EttemaJ (2011) Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere, 5(2), 359375 (doi: 10.5194/tc-5–359–2011)
FretwellP and 59 others (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1), 375393 (doi: 10.5194/tc-7–375–2013)
GreuellJW and KonzelmannT (1994) Numerical modeling of the energy balance and the englacial temperature of the Greenland ice sheet: calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.). Global Planet. Change, 9(1–2), 91114
GunterB and 8 others (2009) A comparison of coincident GRACE and ICESat data over Antarctica. J. Geod., 83(11), 10511060 (doi: 10.1007/s00190–009–0323–4)
HorwathM and DietrichR (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys. J. Int., 177(3), 849864 (doi: 10.1111/j.1365–246X.2009.04139.x)
KingMA, BinghamRJ, MooreP, WhitehousePL, BentleyMJ and MilneGA (2012) Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature, 491(7425), 586589 (doi: 10.1038/nature11621)
Kuipers MunnekeP, Van den BroekeMR, LenaertsJTM, FlannerMG, GardnerAS and Van de BergWJ (2011) A new albedo parameterization for use in climate models over the Antarctic ice sheet. J. Geophys. Res., 116(D5), D05114 (doi: 10.1029/2010JD015113)
LenaertsJTM and Van den BroekeMR (2012) Modeling drifting snow in Antarctica with a regional climate model: 2. Results. J. Geophys. Res., 117(D5), D05109 (doi: 10.1029/2010JD015419)
LenaertsJTM, Van den BroekeMR, Van de BergWJ, Van MeijgaardE and Kuipers MunnekeP (2012a) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39(4), L04501 (doi: 10.1029/2011GL050713)
LenaertsJTM, Van den BroekeMR, ScarchilliC and AgostaC (2012b) Impact of model resolution on simulated wind, drifting snow and surface mass balance in Terre Adélie, East Antarctica. J. Glaciol., 58(211), 821829 (doi: 10.3189/2012JoG12J020)
LenaertsJTM and 6 others (2012c) Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. J. Geophys. Res., 117(D5), D05108 (doi: 10.1029/2011JD016145)
LenaertsJTM, Van AngelenJH, Van den BroekeMR, GardnerAS, WoutersB and Van MeijgaardE (2013) Irreversible mass loss of Canadian Arctic Archipelago glaciers. Geophys. Res. Lett., 40(5), 870874 (doi: 10.1002/grl.50214)
LenaertsJTM and 6 others (2014) Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation. Cryos. Discuss., 8(1), 2153 (doi: 10.5194/tcd-8–21–2014)
LigtenbergSRM, HorwathM, Van den BroekeMR and LegrésyB (2012) Quantifying the seasonal ‘breathing’ of the Antarctic ice sheet. Geophys. Res. Lett., 39(23), L23501 (doi: 10.1029/2012GL053628)
LinY-L, FarleyRD and OrvilleHD (1983) Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteorol., 22(6), 10651092 (doi: 10.1175/1520–0450(1983)022)
LiuH, JezekK, LiB and ZhaoZ (2001) Radarsat Antarctic mapping project digital elevation model Version 2, National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/nsidc-0082.html
MedleyB and 12 others (2013) Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophys. Res. Lett., 40(14), 36493654 (doi: 10.1002/grl.50706)
MedleyB and 14 others (2014) Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica with airborne observations of snow accumulation. Cryos. Discuss., 8(1), 953998 (doi: 10.5194/tcd-8–953–2014)
MouginotJ, ScheuchlB and RignotE (2012) Mapping of ice motion in Antarctica using synthetic-aperture radar data. Remote Sens., 4(9), 27532767 (doi: 10.3390/rs4092753)
ReijmerCH, Van MeijgaardE and Van den BroekeMR (2005) Evaluation of temperature and wind over Antarctica in a Regional Atmospheric Climate Model using 1 year of automatic weather station data and upper air observations. J. Geophys. Res., 110(D4), D04103 (doi: 10.1029/2004JD005234)
RignotE and 6 others (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci., 1(2), 106110 (doi: 10.1038/ngeo102)
RignotE, MouginotJ and ScheuchlB (2011) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
RodellM and 6 others (2004) Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett., 31(20), L20504 (doi: 10.1029/2004GL020873)
ShepherdA and 46 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
TapleyBD, BettardpurS, WatkinsM and ReigberC (2004) The Gravity Recovery and Climate Experiment: mission overview and early results. Geophys. Res. Lett., 31(6), L09607 (doi: 10.1029/2004GL019920)
TompkinsAM, GierensK and Ra¨delG (2007) Ice supersaturation in the ECMWF integrated forecast system. Q. J. R. Meteorol. Soc., 133(622), 5363 (doi: 10.1002/qj.14)
UndénP and 26 others (2002) The high resolution limited area model. HIRLAM-5 scientific documentation. (Technical Report) Swedish Meteorological and Hydrological Institute, Norrköping
Van AngelenJH, LenaertsJTM, Van den BroekeMR, FettweisX and Van MeijgaardE (2013) Rapid loss of firn pore space accelerates 21st century Greenland mass loss. Geophys. Res. Lett., 40(10), 21092113 (doi: 10.1002/grl.50490)
Van de BergWJ, Van den BroekeMR, ReijmerCH and Van MeijgaardE (2005) Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model. Ann. Glaciol., 41, 97104 (doi: 10.3189/172756405781813302)
Van de BergWJ, Van den BroekeMR, ReijmerCH and Van MeijgaardE (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111(D11), D11104 (doi: 10.1029/2005JD006495)
Van LipzigNPM, KingJC, Lachlan-CopeT and Van den BroekeMR (2004) Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. J. Geophys. Res., 109(D24), D24106 (doi: 10.1029/2004JD004701)
Van MeijgaardE and 6 others (2012) Refinement and application of a regional atmospheric model for climate scenario calculations of Western Europe. (Final Report, National Research Programme Climate Changes Spatial Planning KvR 054/12) Royal Netherlands Meteorological Institute, Nieuwegein
Van WessemJM, ReijmerCH, LenaertsJTM, Van de BergWJ, Van den BroekeMR and Van MeijgaardE (2014) Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica. Cryosphere, 8(1), 125135 (doi: 10.5194/tc-8–125–2014)
WahrJ, SwensonS and VelicognaI (2006) Accuracy of GRACE mass estimates. Geophys. Res. Lett., 33(6), L06401 (doi: 10.1029/2005GL025305)
WoutersB, ChambersD and SchramaEJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett., 35(2), L20501 (doi: 10.1029/2008GL034816)
WoutersB, BamberJL, Van den BroekeMR, LenaertsJTM and SasgenI (2013) Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nature Geosci., 6(8), 613616 (doi: 10.1038/ngeo1874)
ZwallyHJ, GiovinettoMB, BeckleyMA and SabaJL (2012) Antarctic and Greenland drainage systems. GSF Cryospheric Sciences Laboratory, Greenbelt, MD. http://icesat4.gsfc.nasa. gov/cryo_data/ant_grn_drainage_systems.php
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 47 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 20th October 2017. This data will be updated every 24 hours.