Skip to main content
×
Home

Thermomechanically coupled modelling for land-terminating glaciers: a comparison of two-dimensional, first-order and three-dimensional, full-Stokes approaches

  • Tong Zhang (a1), Lili Ju (a1), Wei Leng (a2), Stephen Price (a3) and Max Gunzburger (a4)...
Abstract
Abstract

For many regions, glacier inaccessibility results in sparse geometric datasets for use as model initial conditions (e.g. along the central flowline only). In these cases, two-dimensional (2-D) flowline models are often used to study glacier dynamics. Here we systematically investigate the applicability of a 2-D, first-order Stokes approximation flowline model (FLM), modified by shape factors, for the simulation of land-terminating glaciers by comparing it with a 3-D, ‘full’-Stokes ice-flow model (FSM). Based on steady-state and transient, thermomechanically uncoupled and coupled computational experiments, we explore the sensitivities of the FLM and FSM to ice geometry, temperature and forward model integration time. We find that, compared to the FSM, the FLM generally produces slower horizontal velocities, due to simplifications inherent to the FLM and to the underestimation of the shape factor. For polythermal glaciers, those with temperate ice zones, or when basal sliding is important, we find significant differences between simulation results when using the FLM versus the FSM. Over time, initially small differences between the FLM and FSM become much larger, particularly near cold/temperate ice transition surfaces. Long time integrations further increase small initial differences between the two models. We conclude that the FLM should be applied with caution when modelling glacier changes under a warming climate or over long periods of time.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Thermomechanically coupled modelling for land-terminating glaciers: a comparison of two-dimensional, first-order and three-dimensional, full-Stokes approaches
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Thermomechanically coupled modelling for land-terminating glaciers: a comparison of two-dimensional, first-order and three-dimensional, full-Stokes approaches
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Thermomechanically coupled modelling for land-terminating glaciers: a comparison of two-dimensional, first-order and three-dimensional, full-Stokes approaches
      Available formats
      ×
Copyright
Corresponding author
Correspondence: Lili Ju <ju@math.sc.edu>
References
Hide All
Adhikari S and Huybrechts P (2009) Numerical modelling of historical front variations and the 21st-century evolution of glacier AX010, Nepal Himalaya. Ann. Glaciol., 50(52), 2734 (doi: 10.3189/172756409789624346)
Adhikari S and Marshall SJ (2011) Improvements to shear-deformational models of glacier dynamics through a longitudinal stress factor. J. Glaciol., 57(206), 10031016 (doi: 10.3189/002214311798843449)
Adhikari S and Marshall SJ (2012) Parameterization of lateral drag in flowline models of glacier dynamics. J. Glaciol., 58(212), 11191132 (doi: 10.3189/2012JoG12J018)
Adhikari S and Marshall SJ (2013) Influence of high-order mechanics on simulation of glacier response to climate change: insights from Haig Glacier, Canadian Rocky Mountains. Cryosphere, 7(5), 15271541 (doi: 10.5194/tc-7-1527-2013)
Aschwanden A and Blatter H (2005) Meltwater production due to strain heating in Storglaciären, Sweden. J. Geophys. Res., 110, F04024 (doi: 10.1029/2005JF000328)
Blatter H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41(138), 333344
Bueler E and Brown J (2009) Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. J. Geophys. Res, 114, 121 (doi: 10.1029/2008JF001179)
Cornford SL and 8 others (2013) Adaptive mesh, finite volume modeling of marine ice sheets. J. Comput. Phys., 232(1), 529549 (doi: 10.1016/j.jcp.2012.08.037)
Cuffey K and Paterson W.S.B. WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Flowers GE Roux N, Pimentel S and Schoof CG (2011) Present dynamics and future prognosis of a slowly surging glacier. Cryosphere, 5(1), 299313 (doi: 10.5194/tc-5-299-2011)
Gagliardini O, Cohen D, Råaback P and Zwinger T (2007) Finite-element modeling of subglacial cavities and related friction law. J. Geophys. Res., 112(F2), F02027 (doi: 10.1029/2006JF000576)
Gagliardini O and 14 others (2013) Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geosci. Model Dev., 6(4), 12991318 (doi: 10.5194/gmd-6-1299-2013)
Goldberg DN (2011) A variationally derived, depth-integrated approximation to a higher-order glaciological flow model. J. Glaciol., 57(201), 157170 (doi: 10.3189/002214311795306763)
Greve R and Blatter H (2009) Dynamics of ice sheets and glaciers. Springer, Berlin
Hutter K (1983) Theoretical glaciology: material science of ice and the mechanics of glaciers and ice sheets. Springer, Berlin
Huybrechts P (1990) A 3-D model for Antarctic ice sheet: a sensitivity study on the glacial–interglacial contrast. Climate Dyn., 5, 7992
Huybrechts P, Payne T and the EISMINT Intercomparison Group (1996) The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23, 112
Immerzeel WW, Van Beek LPH and Bierkens MFP (2010) Climate change will affect the Asian water towers. Science, 328(5984), 13821385 (doi: 10.1126/science.1183188)
Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Larour E, Morlighem M, Seroussi H, Schiermeier J and Rignot E (2012) Ice flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica. J. Geophys. Res., 117(F4), F04023 (doi: 10.1029/2012JF002371)
Le Meur E, Gagliardini O, Zwinger T and Ruokolainen J (2004) Glacier flow modelling: a comparison of the Shallow Ice Approximation and the full-Stokes solution. C. R. Phys., 5(7), 709722 (doi: 10.1016/j.crhy.2004.10.001)
Leng W, Ju L, Gunzburger M, Price S and Ringler T (2012) A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments. J. Geophys. Res., 117(F1) (doi: 10.1029/2011JF001962)
Leng W, Ju L, Gunzburger M and Price S (2013) Manufactured solutions and the verification of three-dimensional Stokes ice-sheet models. Cryosphere, 7(1), 1929 (doi: 10.5194/tc-7-19-2013)
Leng W, Ju L, Gunzburger M and Price S (2014a) A parallel computational model for three-dimensional, thermo-mechanical Stokes flow simulations of glaciers and ice sheets. Commun. Comput. Phys., 16, 10561080 (doi: 10.4208/cicp.310813.010414a)
Leng W, Ju L, Xie Y, Cui T and Gunzburger M (2014b) Finite element three-dimensional Stokes ice sheet dynamics model with enhanced local mass conservation. J. Comput. Phys., 274, 299311 (doi:10.1016/j.jcp.2014.06.014)
Morland LW (1984) Thermo-mechanical balances of ice sheet flow. Geophys. Astrophys. Fluid Dyn., 29, 237266
Morland LW (1987) Dynamics of the West Antarctic ice sheet. D Reidel Publishing Co., 99116
Nye JF (1965) The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section. J. Glaciol., 5(41), 661690
Oerlemans J (1986) An attempt to simulate historic front variations of Nigardsbreen, Norway. Theor. Appl. Climatol., 37, 126135
Oerlemans J (1997) A flowline model for Nigardsbreen, Norway: projection of future glacier length based on dynamic calibration with the historic record. Ann. Glaciol., 24, 382389
Pattyn F (2002) Transient glacier response with a higher-order numerical ice-flow model. J. Glaciol., 48(162), 467477 (doi: 10.3189/172756502781831278)
Pattyn F (2003) A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 108(B8), 2382 (doi: 10.1029/2002JB002329)
Pattyn F (2008) Investigating the stability of subglacial lakes with a full Stokes ice-sheet model. J. Glaciol., 54(185), 353361 (doi: 10.3189/002214308784886171)
Pattyn F, Nolan M, Rabus B and Takahashi S (2005) Localized basal motion of a polythermal Arctic glacier: McCall Glacier, Alaska, USA. Ann. Glaciol., 40, 15 (doi: 10.3189/172756405781813537)
Pattyn F and 20 others (2008) Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM). Cryosphere, 2(2), 95108 (doi: 10.5194/tcd-2-111-2008)
Pimentel S, Flowers GE and Schoof CG (2010) A hydrologically coupled higher-order flow-band model of ice dynamics with a Coulomb friction sliding law. J. Geophys. Res., 115(F4), F04023 (doi: 10.1029/2009JF001621)
Price SF and Walder JS (2007) Modeling the dynamic response of a crater glacier to lava-dome emplacement: Mount St Helens, Washington, USA. Ann. Glaciol., 45, 2128 (doi: 10.3189/172756407782282525)
Price SF, Waddington ED and Conway H (2007) A full-stress, thermomechanical flow band model using the finite volume method. J. Geophys. Res., 112(F3), F03020 (doi: 10.1029/2006JF000724)
Saito F, Abe-Ouchi A and Blatter H (2003) Effects of first-order stress gradients in an ice sheet evaluated by a three-dimensional thermomechanical model. Ann. Glaciol., 37, 166172
Schoof C and Hewitt I (2012) Ice-sheet dynamics. Annu. Rev. Fluid Mech., 217239 (doi: 10.1146/annurev-fluid-011212-140632)
Schoof C and Hindmarsh RCA (2010) Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Q. J. Mech. Appl. Math., 63(1), 73114 (doi: 10.1093/qjmam/hbp025)
Seddik H, Greve R, Zwinger T, Gillet-Chaulet F and Gagliardini O (2012) Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice. J. Glaciol., 58(209), 427440 (doi: 10.3189/2012JoG11J177)
Zhang T, Xiao C, Qin X, Hou D and Ding M (2012) Ice thickness observation and landform study of East Rongbuk Glacier, Mt Qomolangma. J. Glaciol. Geocryol., 34(5), 10591066 [in Chinese with English abstract]
Zhang T and 7 others (2013) Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya. J. Glaciol., 59, 438448 (doi: 10.3189/2013JoG12J202)
Zwinger T, Greve R, Gagliardini O and Shiraiwa T (2007) A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka. Ann. Glaciol., 45, 2937
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 24 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 13th December 2017. This data will be updated every 24 hours.