Skip to main content Accessibility help

Ab initio description of quasiparticle band structures and optical near-edge absorption of transparent conducting oxides

  • André Schleife (a1) and Friedhelm Bechstedt (a2)


Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical absorption spectra (including excitonic effects) for several transparent conducting oxides (TCOs). We discuss HSE+G0W0 results (based on the hybrid exchange-correlation functional by Heyd, Scuseria, and Ernzerhof, and quasiparticle corrections from approximating the electronic self energy as the product of the Green’s function and the screened Coulomb interaction) for band structures, fundamental band gaps, and effective electron masses of magnesium oxide, zinc oxide, cadmium oxide, tin dioxide, tin oxide, indium (III) oxide and silicon dioxide. The Bethe–Salpeter equation (BSE) is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G0W0 approach and the solution of the BSE are very well suited to describe the electronic structure and the optical properties of various TCOs in good agreement with experiment.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Ginley, D.S. and Bright, C.: Transparent conducting oxides. MRS Bull. 25, 18 (2000).
2.Fortunato, E., Ginley, D., Hosono, H., and Paine, D.C.: Transparent conducting oxides for photovoltaics. MRS Bull. 32, 247 (2007).
3.Schleife, A., Rödl, C., Furthmüller, J., and Bechstedt, F.: Electronic and optical properties of MgxZn1−xO and Cdx Zn1−xO from ab initio calculations. New J. Phys. 13(8), 085012 (2011).
4.Seko, A., Togo, A., Oba, F., and Tanaka, I.: Structure and stability of a homologous series of tin oxides. Phys. Rev. Lett. 100, 045702 (2008).
5.Lany, S. and Zunger, A.: Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys. Rev. Lett. 98, 045501 (2007).
6.Sernelius, B.E., Berggren, K-F., Jin, Z-C., Hamberg, I., and Granqvist, C.G.: Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B 37(17), 1024410248 (1988).
7.Tahar, R.B.H., Ban, T., Ohya, Y., and Takahashi, Y.: Tin-doped indium oxide thin films: Electrical properties. J. Appl. Phys. 83(5), 26312645 (1998).
8.Li, Z.Q., Yin, Y.L., Liu, X.D., Li, L.Y., Liu, H., and Song, Q.G.: Electronic structure and optical properties of Sb-doped SnO2. J. Appl. Phys. 106(8), 083701 (2009).
9.White, M.E., Bierwagen, O., Tsai, M.Y., and Speck, J.S.: Electron transport properties of antimony-doped SnO2 single crystalline thin films grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 106(9), 093704 (2009).
10.Buchholz, D.B., Liu, J., Marks, T.J., Zhang, M., and Chang, R.P.H.: Control and characterization of the structural, electrical, and optical properties of amorphous zinc-indium-tin oxide thin films. ACS Appl. Mater. Interfaces 1(10), 21472153 (2009).
11.Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35 (2005).
12.Sun, J., Lu, A., Wang, L., Hu, Y., and Wan, Q.: High-mobility transparent thin-film transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature. Nanotechnology 20(33), 335204 (2009).
13.Bierwagen, O. and Speck, J.S.: High electron mobility In2O3 (001) and (111) thin films with nondegenerate electron concentration. Appl. Phys. Lett. 97(7), 072103 (2010).
14.Badawy, W.A.: Improvement of n-Si/SnO2 electrolyte photoelectrochemical cells by Ru deposits. J. Electroanal. Chem. 281(1–2), 8595 (1990).
15.Lunt, R.R. and Bulovic, V.: Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 98(11), 113305 (2011).
16.Klein, A., Körber, C., Wachau, A., Säuberlich, F., Gassenbauer, Y., Harvey, S.P., Proffit, D.E., and Mason, T.O.: Transparent conducting oxides for photovoltaics: Manipulation of Fermi level, work function and energy band alignment. Materials 3(11), 48924914 (2010).
17.Robertson, J.: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69(2), 327 (2006).
18.Reyes-Gil, K.R., Reyes-García, E.A., and Raftery, D.: Nitrogen-doped In2O3 thin film electrodes for photocatalytic water splitting. J. Phys. Chem. C 111(39), 1457914588 (2007).
19.Nagata, T., Bierwagen, O., White, M.E., Tsai, M.Y., Yamashita, Y., Yoshikawa, H., Ohashi, N., Kobayashi, K., Chikyow, T., and Speck, J.S.: XPS study of Sb-/In-doping and surface pinning effects on the Fermi level in SnO2 (101) thin films. Appl. Phys. Lett. 98(23), 232107 (2011).
20.Piper, L.F.J., Colakerol, L., King, P.D.C., Schleife, A., Zúñiga-Pérez, J., Glans, P-A., Learmonth, T., Federov, A., Veal, T.D., Fuchs, F., Muñoz-Sanjosé, V., Bechstedt, F., McConville, C.F., and Smith, K.E.: Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy. Phys. Rev. B 78(16), 165127 (2008).
21.Allen, M.W., Swartz, C.H., Myers, T.H., Veal, T.D., McConville, C.F., and Durbin, S.M.: Bulk transport measurements in ZnO: The effect of surface electron layers. Phys. Rev. B 81, 075211 (2010).
22.Bierwagen, O., Speck, J.S., Nagata, T., Chikyow, T., Yamashita, Y., Yoshikawa, H., and Kobayashi, K.: Depletion of the In2O3 (001) and (111) surface electron accumulation by an oxygen plasma surface treatment. Appl. Phys. Lett. 98(17), 172101 (2011).
23.Allen, M.W., Zemlyanov, D.Y., Waterhouse, G.I.N., Metson, J.B., Veal, T.D., McConville, C.F., and Durbin, S.M.: Polarity effects in the x-ray photoemission of ZnO and other wurtzite semiconductors. Appl. Phys. Lett. 98(10), 101906 (2011).
24.Küfner, S.: Ab initio untersuchung von zinnmonoxid- und zinndioxidoberflächen. Master’s Thesis, Friedrich-Schiller-University, Jena, 2011.
25.Ágoston, P. and Albe, K.: Thermodynamic stability, stoichiometry, and electronic structure of bcc-In2O3 surfaces. Phys. Rev. B 84, 045311 (2011).
26.Kong, X.Y. and Wang, Z.L.: Structures of indium oxide nanobelts. Solid State Commun. 128(1), 14 (2003).
27.Li, Y., Bando, Y., and Golberg, D.: Single-crystalline In2O3 nanotubes filled with In. Adv. Mater. 15(7–8), 581585 (2003).
28.Beltrán, A., Andrés, J., Longo, E., and Leite, E.R.: Thermodynamic argument about SnO2 nanoribbon growth. Appl. Phys. Lett. 83(4), 635637 (2003).
29.Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H., Qi, L., Kushima, A., and Li, J.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 15151520 (2010).
30.Müller, V., Rasp, M., Štefanić, G., Ba, J., Günther, S., Rathousky, J., Niederberger, M., and Fattakhova-Rohlfing, D.: Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol-gel procedure. Chem. Mater. 21(21), 52295236 (2009).
31.Wagner, M.R., Schulze, J-H., Kirste, R., Cobet, M., Hoffmann, A., Rauch, C., Rodina, A.V., Meyer, B.K., Röder, U., and Thonke, K.: Γ7 valence band symmetry related hole fine splitting of bound excitons in ZnO observed in magneto-optical studies. Phys. Rev. B 80, 205203 (2009).
32.Wagner, M.R., Callsen, G., Reparaz, J.S., Schulze, J-H., Kirste, R., Cobet, M., Ostapenko, I.A., Rodt, S., Nenstiel, C., Kaiser, M., Hoffmann, A., Rodina, A.V., Phillips, M.R., Lautenschläger, S., Eisermann, S., and Meyer, B.K.: Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers. Phys. Rev. B 84, 035313 (2011).
33.Matino, F., Persano, L., Arima, V., Pisignano, D., Blyth, R.I.R., Cingolani, R., and Rinaldi, R.: Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition. Phys. Rev. B 72, 085437 (2005).
34.Wang, C.Y., Cimalla, V., Romanus, H., Kups, T., Ecke, G., Stauden, T., Ali, M., Lebedev, V., Pezoldt, J., and Ambacher, O.: Phase-selective growth and properties of rhombohedral and cubic indium oxide. Appl. Phys. Lett. 89(1), 011904 (2006).
35.Lambrecht, W.R.L., Rodina, A.V., Limpijumnong, S., Segall, B., and Meyer, B.K.: Valence-band ordering and magneto-optic exciton fine structure in ZnO. Phys. Rev. B 65(7), 075207 (2002).
36.Robertson, J.: Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2. J. Phys. C: Solid State Phys. 12(22), 4767 (1979).
37.Svane, A. and Antoncik, E.: Electronic structure of rutile SnO2, GeO2 and TeO2. J. Phys. Chem. Solids 48(2), 171180 (1987).
38.Reimann, K. and Steube, M.: Experimental determination of the electronic band structure of SnO2. Solid State Commun. 105(10), 649652 (1998).
39.Fuchs, F., Furthmüller, J., Bechstedt, F., Shishkin, M., and Kresse, G.: Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys. Rev. B 76(11), 115109 (2007).
40.Bechstedt, F., Fuchs, F., and Kresse, G.: Ab initio theory of semiconductor band structures: New developments and progress. Phys. Status Solidi B 246(8), 18771892 (2009).
41.Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F.: Ab initio theory of excitons and optical properties for spin-polarized systems: Application to antiferromagnetic MnO. Phys. Rev. B 77(18), 184408 (2008).
42.Bechstedt, F., Fuchs, F., and Furthmüller, J.: Spectral properties of InN and its native oxide from first principles. Phys. Status Solidi A, 207(5), 10411053 (2010).
43.Schleife, A., Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F.: Optical and energy-loss spectra of MgO, ZnO, and CdO from ab initio many-body calculations. Phys. Rev. B 80(3), 035112 (2009).
44.Schleife, A., Varley, J.B., Fuchs, F., Rödl, C., Bechstedt, F., Rinke, P., Janotti, A., and Van de Walle, C.G.: Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B 83(3), 035116 (2011).
45.Schleife, A.: Exciting imperfection: Real-structure effects in magnesium-, cadmium-, and zinc-oxide. Ph.D Thesis, Friedrich-Schiller-Universität, Jena, 2010.
46.Schleife, André: Electronic and Optical Properties of MgO, ZnO, and CdO (Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken, Germany, 2011).
47.Yan, Q., Rinke, P., Winkelnkemper, M., Qteish, A., Bimberg, D., Scheffler, M., and Van de Walle, C.G.: Band parameters and strain effects in ZnO and group-III nitrides. Semicond. Sci. Technol. 26(1), 014037 (2011).
48.Schleife, A., Eisenacher, M., Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F.: Ab initio description of heterostructural alloys: Thermodynamic and structural properties of MgxZn1−xO and CdxZn1−xO. Phys. Rev. B 81(24), 245210 (2010).
49.Schleife, A. and Bechstedt, F.: Real-structure effects: Absorption edge of MgxZn1−xO, CdxZn1−xO, and n-type ZnO from ab initio calculations. Proc. SPIE 8263(1), 826309 (2012).
50.Rinke, P., Schleife, A., Kioupakis, E., Janotti, A., Rödl, C., Bechstedt, F., Scheffler, M., and Van de Walle, C.G.: First-principles optical spectra for F centers in MgO. Phys. Rev. Lett. 108, 126404 (2012).
51.Furthmüller, J., Hachenberg, F., Schleife, A., Rogers, D., Teherani, F.H., and Bechstedt, F.: Clustering of N impurities in ZnO. Appl. Phys. Lett. 100(2), 022107 (2012).
52.Schleife, A., Rödl, C., Fuchs, F., Hannewald, K., and Bechstedt, F.: Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons? Phys. Rev. Lett. 107, 236405 (2011).
53.Ágoston, P., Albe, K., Nieminen, R.M., and Puska, M.J.: Intrinsic n-type behavior in transparent conducting oxides: A comparative hybrid functional study of In2O3, SnO2, and ZnO. Phys. Rev. Lett. 103, 245501 (2009).
54.Ágoston, P., Körber, C., Klein, A., Puska, M.J., Nieminen, R.M., and Albe, K.: Limits for n-type doping in In2O3 and SnO2: A theoretical approach by first-principles calculations using hybrid functional methodology. J. Appl. Phys. 108(5), 053511 (2010).
55.Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864B871 (1964).
56.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133A1138 (1965).
57.Schleife, A., Fuchs, F., Furthmüller, J., and Bechstedt, F.: First-principles study of ground- and excited state properties of MgO, ZnO, and CdO polymorphs. Phys. Rev. B 73(24), 245212 (2006).
58.Küfner, S., Schleife, A., and Bechstedt, F.: Unpublished work, 2012.
59.Fuchs, F. and Bechstedt, F.: Indium oxide polymorphs from first-principles: Quasiparticle electronic states. Phys. Rev. B 77(15), 155107 (2008).
60.Fuchs, F.: Private communication, 2011.
61.Höffling, B., Schleife, A., Rödl, C., and Bechstedt, F.. Band discontinuities at Si–TCO interfaces from quasiparticle calculations: Comparison of two alignment approaches. Phys. Rev. B 85, 035305 (2012).
62.Hybertsen, M.S. and Louie, S.G.: Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34(8), 53905413 (1986).
63.Perdew, J.P. and Levy, M.: Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities. Phys. Rev. Lett. 51, 18841887 (1983).
64.Sham, L.J. and Schlüter, M.: Density-functional theory of the energy gap. Phys. Rev. Lett. 51, 18881891 (1983).
65.Hedin, L.: New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139(3A), A796A823 (1965).
66.Hedin, L. and Lundqvist, S.: Effects of electron-electron and electron-phonon interactions on the one-electron states of solids, in Advances in Research and Applications of Solid State Physics, Vol. 23, edited by Seiz, D.T.F. and Ehrenreich, H. (Academic Press, Waltham, MA, 1970); pp. 1181.
67.Heyd, J., Scuseria, G.E., and Ernzerhof, M.: Erratum: “Hybrid functionals based on a screened coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys., 124():219906, 2006.
68.Paier, J., Marsman, M., Hummer, K., Kresse, G., Gerber, I.C., and Ángyán, J.G.: Screened hybrid density functionals applied to solids. J. Chem. Phys. 124(15), 154709 (2006).
69.Paier, J., Marsman, M., Hummer, K., Kresse, G., Gerber, I.C., and Ángyán, J.G.: Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)].J. Chem. Phys., 125():249901, 2006.
70.Schleife, A., Rödl, C., Fuchs, F., Furthmüller, J., Bechstedt, F., Jefferson, P.H., Veal, T.D., McConville, C.F., Piper, L.F.J., DeMasi, A., Smith, K.E., Lösch, H., Goldhahn, R., Cobet, C., Zúñiga-Pérez, J., and Muñoz-Sanjosé, V.: Ab initio studies of electronic and spectroscopic properties of MgO, ZnO, and CdO. J. Korean Phys. Soc. 53(5), 28112815 (2008).
71.Schleife, A., Fuchs, F., Rödl, C., Furthmüller, J., and Bechstedt, F.: Band-structure and optical transition parameters of wurtzite MgO, ZnO, and CdO from quasiparticle calculations. Phys. Status Solidi B 246(9), 21502153 (2009).
72.Hobbs, D., Kresse, G., and Hafner, J.: Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B 62(17), 1155611570 (2000).
73.Schleife, A., Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F.: Strain influence on valence-band ordering and excitons in ZnO: An ab initio study. Appl. Phys. Lett. 91(24), 241915 (2007).
74.Anisimov, V.I., Zaanen, J., and Andersen, O.K.: Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44(3), 943954 (1991).
75.Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., and Sutton, A.P.. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57(3), 15051509 (1998).
76.Aulbur, W.G., Jönsson, L., and Wilkins, J.W.: Quasiparticle calculations in solids, in Advances in Research and Applications of Solid State Physics, Vol. 54, edited by Ehrenreich, H. and Spaepen, F. (Academic Press, Waltham, MA, 1999); pp. 1218.
77.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 1116911186 (1996).
78.Kresse, G. and Furthmüller, J.: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 1550 (1996).
79.Shishkin, M. and Kresse, G.: Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys. Rev. B 74(3), 035101, (2006).
80.Blöchl, P.E.. Projector augmented-wave method. Phys. Rev. B 50(24), 1795317979 (1994).
81.Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 17581775 (1999).
82.Strinati, G.: Application of the Green’s functions method to the study of the optical properties of semiconductors. Riv. Nuovo Cimento 11(12), 186 (1988).
83.Onida, G., Reining, L., and Rubio, A.: Electronic excitations: Density functional versus many-body Green’s function approaches. Rev. Mod. Phys. 74(2), 601659 (2002).
84.Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F.: Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO. Phys. Rev. B 79(23), 235114 (2009).
85.Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., and Bechstedt, F.: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73(4), 045112 (2006).
86.Albrecht, S., Reining, L., Del Sole, R., and Onida, G.: Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80(20), 45104513 (1998).
87.Benedict, L.X., Shirley, E.L., and Bohn, R.B.: Optical absorption of insulators and the electron-hole interaction: An ab initio calculation. Phys. Rev. Lett. 80(20), 45144517 (1998).
88.Rohlfing, M. and Louie, S.G.: Electron-hole excitations in semiconductors and insulators. Phys. Rev. Lett. 81(11), 23122315 (1998).
89.Fuchs, F., Rödl, C., Schleife, A., and Bechstedt, F.. Efficient O(N 2) approach to solve the Bethe-Salpeter equation for excitonic bound states. Phys. Rev. B 78(8), 085103 (2008).
90.Schmidt, W.G., Glutsch, S., Hahn, P.H., and Bechstedt, F.: Efficient O(N 2) method to solve the Bethe-Salpeter equation. Phys. Rev. B 67(8), 085307 (2003).
91.Kronig, L.: On the theory of dispersion of x-rays. J. Opt. Soc. Am. 12(6), 547556 (1926).
92.Kramers, H.A.: Some remarks on the theory of absorption and refraction of x-rays. Nature 117, 775 (1926).
93.Yin, W-J., Wei, S-H., Al-Jassim, M.M., and Yan, Y.: Prediction of the chemical trends of oxygen vacancy levels in binary metal oxides. Appl. Phys. Lett. 99(14), 142109 (2011).
94.Martienssen, W. and Warlimont, H.: Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, 2005).
95.Gil, B., Lusson, A., Sallet, V., Said-Hassani, S-A., Triboulet, R., and Bigenwald, P.: Strain-fields effects and reversal of the nature of the fundamental valence band of ZnO epilayers. Jpn. J. Appl. Phys., Part 2 40(10B), L1089L1092 (2001).
96.Oshikiri, M., Imanaka, Y., Aryasetiawan, F., and Kido, G.: Comparison of the electron effective mass of the n-type ZnO in the wurtzite structure measured by cyclotron resonance and calculated from first-principle theory. Physica B 298(1–4), 472476 (2001).
97.Dou, Y., Egdell, R.G., Law, D.S.L., Harrison, N.M., and Searle, B.G.: An experimental and theoretical investigation of the electronic structure of CdO. J. Phys. Condens. Matter 10(38), 84478458 (1998).
98.Jefferson, P.H., Hatfield, S.A., Veal, T.D., King, P.D.C., McConville, C.F., Zúñiga-Pérez, J., and Muñoz-Sanjosé, V.: Band gap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92(2), 022101 (2008).
99.Fröhlich, D., Kenklies, R., and Helbig, R.: Band-gap assignment in SnO2 by two-photon spectroscopy. Phys. Rev. Lett. 41, 17501751 (1978).
100.Button, K.J., Fonstad, C.G., and Dreybrodt, W.: Determination of the electron masses in stannic oxide by submillimeter cyclotron resonance. Phys. Rev. B 4, 45394542 (1971).
101.Ogo, Y., Hiramatsu, H., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., and Hosono, H.: p-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl. Phys. Lett. 93(3), 032113 (2008).
102.Jarzebski, Z.M.: Preparation and physical properties of transparent conducting oxide films. Phys. Status Solidi A 71(1), 1341 (1982).
103.Powell, R.J. and Derbenwick, G.F.: Vacuum ultraviolet radiation effects in SiO2. IEEE Trans. Nucl. Sci. 18(6), 99105 (1971).
104.Chanana, R.K.; Determination of hole effective mass in SiO2 and SiC conduction band offset using Fowler-Nordheim tunneling characteristics across metal-oxide-semiconductor structures after applying oxide field corrections. J. Appl. Phys. 109(10), 104508 (2011).
105.King, P.D.C., Veal, T.D., Schleife, A., Zúñiga-Pérez, J., Martel, B., Jefferson, P.H., Fuchs, F., Muñoz-Sanjosé, V., Bechstedt, F., and McConville, C.F.: Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasiparticle-corrected density-functional theory calculations. Phys. Rev. B 79(20), 205205 (2009).
106.Piper, L.F.J., DeMasi, A., Smith, K.E., Schleife, A., Fuchs, F., Bechstedt, F., Zúñiga-Pérez, J., and Muñoz-Sanjosé, V.: Electronic structure of single-crystal rocksalt CdO studied by soft x-ray spectroscopies and ab initio calculations. Phys. Rev. B 77(12), 125204 (2008).
107.Preston, A.R.H., Ruck, B.J., Piper, L.F.J., DeMasi, A., Smith, K.E., Schleife, A., Fuchs, F., Bechstedt, F., Chai, J., and Durbin, S.M.: Band structure of ZnO from resonant x-ray emission spectroscopy. Phys. Rev. B 78(15), 155114 (2008).
108.Schleife, A., Fuchs, F., Rödl, C., Furthmüller, J., and Bechstedt, F.: Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations. Appl. Phys. Lett. 94(1), 012104 (2009).
109.Höffling, B., Schleife, A., Fuchs, F., Rödl, C., and Bechstedt, F.: Band lineup between silicon and transparent conducting oxides. Appl. Phys. Lett. 97(3), 032116 (2010). Carvalho, L.C., Schleife, A., Fuchs, F., and Bechstedt, F.: Valence-band splittings in cubic and hexagonal AlN, GaN, and InN. Appl. Phys. Lett. 97(23), 232101 (2010).
111.Kioupakis, E., Rinke, P., Schleife, A., Bechstedt, F., and Van de Walle, C.G.: Free-carrier absorption in nitrides from first principles. Phys. Rev. B 81(24), 241201 (2010). Carvalho, L.C., Schleife, A., and Bechstedt, F.: Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN polytypes. Phys. Rev. B 84, 195105 (2011).
113.Belabbes, A., de Carvalho, L.C., Schleife, A., and Bechstedt, F.: Cubic inclusions in hexagonal AlN, GaN, and InN: Electronic states. Phys. Rev. B 84, 125108 (2011). Carvalho, L.C., Schleife, A., Furthmüller, J., and Bechstedt, F.: Distribution of cations in wurtzitic InxGa1−xN and InxAl1−xN alloys: Consequences for energetics and quasiparticle electronic structures. Phys. Rev. B 85, 115121 (2012).
115.Bortz, M.L., French, R.H., Jones, D.J., Kasowski, R.V., and Ohuchi, F.S.: Temperature dependence of the electronic structure of oxides: MgO, MgAl2O4 and Al2O3. Phys. Scr. 41(4), 537541 (1990).
116.Wang, N-P., Rohlfing, M., Krüger, P., and Pollmann, J.: Electronic excitations of CO adsorbed on MgO(001). Appl. Phys. A 78(2), 213221 (2004).
117.Laskowski, R. and Christensen, N.E.: Ab initio calculation of excitons in ZnO. Phys. Rev. B 73(4), 045201 (2006).
118.Gori, P., Rakel, M., Cobet, C., Richter, W., Esser, N., Hoffmann, A., Del Sole, R., Cricenti, A., and Pulci, O.: Optical spectra of ZnO in the far ultraviolet: First-principles calculations and ellipsometric measurements. Phys. Rev. B 81, 125207 (2010).
119.Riefer, A., Fuchs, F., Rödl, C., Schleife, A., Bechstedt, F., and Goldhahn, R.: Interplay of excitonic effects and van Hove singularities in optical spectra: CaO and AlN polymorphs. Phys. Rev. B 84, 075218 (2011).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed