Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T11:00:18.852Z Has data issue: false hasContentIssue false

Abnormal thermal shock behavior of Ti3SiC2 and Ti3AlC2

Published online by Cambridge University Press:  03 March 2011

H.B. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Y.C. Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Y.W. Bao
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
M.S. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: yczhou@imr.ac.cn
Get access

Abstract

Many layered ternary ceramics displayed unusual thermal shock behavior, i.e., the retained strengths of as-quenched samples increased with increasing quench temperature above a critical quench temperature. However, the causation was not clear even though this phenomenon has been observed for 10 years. In this study, the thermal shock behavior of Ti3SiC2 and Ti3AlC2, two representative members of layered ternary ceramics, was investigated. The results indicated that the formation of surface oxides was responsible for this abnormal phenomenon. These results might contribute to the understanding of this unusual behavior of other layered ternary ceramics.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Koh, Y-H., Kim, H-W., Kim, H-E., and Halloran, J.W.: Thermal shock resistance of fibrous monolithic Si3N4/BN ceramics. J. Eur. Ceram. Soc. 24, 2339 (2004).Google Scholar
2Lutz, E.H., Swain, M.V., and Claussen, N.: Thermal shock behavior of duplex ceramics. J. Am. Ceram. Soc. 74, 19 (1991).CrossRefGoogle Scholar
3You, X.Q., Si, T.Z., Liu, N., Ren, P.P., Xu, Y.D., and Feng, J.P.: Effect of grain size on thermal shock resistance of Al2O3TiC ceramics. Ceram. Inter. 31, 33 (2005).CrossRefGoogle Scholar
4Aldridge, M. and Yeomans, J.A.: The thermal shock behaviour of ductile particle toughened alumina composites. J. Eur. Ceram. Soc. 19, 1769 (1999).Google Scholar
5Hirano, T. and Niihara, K.: Thermal shock resistance of Si3N4/SiC nanocomposites fabricated from amorphous Si-C-N precursor powders. Mater. Lett. 26, 285 (1996).Google Scholar
6Barsoum, M.W. and El-Raghy, T.: Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953 (1996).Google Scholar
7El-Raghy, T., Barsoum, M.W., Zavaliangos, A., and Kalidindi, S.R.: Processing and mechanical properties of Ti3SiC2: II. Effect of grain size and deformation temperature. J. Am. Ceram. Soc. 82, 2855 (1999).CrossRefGoogle Scholar
8Tzenov, N.V. and Barsoum, M.W.: Synthesis and characterization of Ti3AlC2. J. Am. Ceram. Soc. 83, 825 (2000).CrossRefGoogle Scholar
9Wang, X.H. and Zhou, Y.C.: Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater. 50, 3141 (2002).CrossRefGoogle Scholar
10Bao, Y.W., Wang, X.H., Zhang, H.B., and Zhou, Y.C.: Thermal shock behavior of Ti3AlC2 quenched in various media from 200 to 1300 °C. J. Eur. Ceram. Soc. 25, 3367 (2005).CrossRefGoogle Scholar
11Ganguly, A., Zhen, T., and Barsoum, M.W.: Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x)C2 (x = 0.5, 0.75) solid solutions. J. Alloys Compd. 376, 287 (2004).CrossRefGoogle Scholar
12Procopio, A.T., Barsoum, M.W., and El-Raghy, T.: Characterization of Ti4AlN3. Metall. Mater. Trans. A 31, 333 (2000).Google Scholar
13Salama, I., El-Raghy, T., and Barsoum, M.W.: Synthesis and mechanical properties of Nb2AlC and (Ti, Nb)2AlC. J. Alloys Compd. 347, 271 (2002).CrossRefGoogle Scholar
14Barsoum, M.W.: The MN+1AXN phases: A new class of solids. Prog. Solid State Chem. 28, 201 (2000).Google Scholar
15Zhou, Y.C., Sun, Z.M., Chen, S.Q., and Zhang, Y.: In-situ hot pressing/ solid-liquid reaction synthesis of dense titanium silicon carbide bulk ceramic. Mater. Res. Innov. 2, 142 (1998).Google Scholar
16Wang, X.H. and Zhou, Y.C.: Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. J. Mater. Chem. 12, 455 (2002).Google Scholar
17Zhou, Y.C. and Sun, Z.M.: Micro-scale plastic deformation of polycrystalline Ti3SiC2 under room-temperature compression. J. Eur. Ceram. Soc. 21, 1007 (2001).CrossRefGoogle Scholar
18Orenstein, R.M. and Green, D.J.: Thermal shock behavior of open-cell ceramic foams. J. Am. Ceram. Soc. 75, 1899 (1992).Google Scholar
19Lee, W.J. and Case, E.D.: Cyclic thermal shock in SiC-whisker-reinforced alumina composite. Mater. Sci. Eng., A 119, 113 (1989).Google Scholar
20Wang, H.Y., Singh, R.N., and Lowden, R.A.: Thermal shock behavior of two-dimensional woven fiber-reinforced ceramic composites. J. Am. Ceram. Soc. 79, 1783 (1996).CrossRefGoogle Scholar
21Vandeperre, L.J., Kristofferson, A., Carlstrom, E., and Clegg, W.J.: Thermal shock of layered ceramic structures with crack-deflecting interfaces. J. Am. Ceram. Soc. 84, 104 (2001).Google Scholar
22 Almaz Optics. Available at http://www.almazoptics.com/homepage/TiO2.htm; accessed 2006.Google Scholar
23Sun, Z., Zhou, Y., and Li, M.: High temperature oxidation behavior of Ti3SiC2-based material in air. Acta Mater. 49, 4347 (2001).CrossRefGoogle Scholar
24Barsoum, M.W., El-Raghy, T., and Ogbuji, L.U.J.T.: Oxidation of Ti3SiC2 in air. J. Electrochem. Soc. 144, 2508 (1997).CrossRefGoogle Scholar
25Glenny, E. and Royston, M.G.: Transient thermal stresses promoted by rapid heating and cooling of brittle circular cylinders. Trans. Br. Ceram. Soc. 57, 645 (1958).Google Scholar
26Davidge, R.W. and Tappin, G.: Thermal shock and fracture in ceramics. Trans. Br. Ceram. Soc. 66, 405 (1967).Google Scholar
27Hasselman, D.P.H.: Strength behavior of polycrystalline alumina subjected to thermal shock. J. Am. Ceram. Soc. 53, 490 (1970).Google Scholar
28Mai, Y.W. and Atkins, A.G.: Fracture strength behavior of tool carbides subjected to thermal shock. Am. Ceram. Soc. Bull. 54, 593 (1975).Google Scholar
29Kingery, W.D.: Factors affecting thermal stress resistance of ceramic materials. J. Am. Ceram. Soc. 38, 3 (1955).CrossRefGoogle Scholar
30Chiu, C.C.: Influence of surface oxidation on thermal shock resistance and flexural strength of SiC/Al2O3 composites. J. Mater. Sci. 29, 2078 (1994).Google Scholar
31Lewis, D.: Effect of surface treatment on the strength and thermal shock behavior of a commercial glass-ceramic. Am. Ceram. Soc. Bull. 58, 599 (1979).Google Scholar
32Takatori, K.: Thermal shock resistance of alumina-sialon composites. J. Mater. Sci. 29, 2115 (1994).CrossRefGoogle Scholar
33Zhou, Y.C. and Sun, Z.M.: Microstructure and mechanism of damage tolerance for Ti3SiC2 bulk ceramics. Mater. Res. Innov. 2, 360 (1999).CrossRefGoogle Scholar
34Barsoum, M.W., El-Raghy, T., Rawn, C.J., Porter, W.D., Wang, H., Payzant, E.A., and Hubbard, C.R.: Thermal properties of Ti3SiC2. J. Phys. Chem. Solids 60, 429 (1999).Google Scholar