Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-09T17:50:30.623Z Has data issue: false hasContentIssue false

Atomic and electronic properties of quasi-one-dimensional MoS2 nanowires

Published online by Cambridge University Press:  05 December 2012

Lucas Fernandez Seivane*
Affiliation:
Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-0697
Hector Barron
Affiliation:
Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-0697
Silvana Botti
Affiliation:
Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM, 91128 Palaiseau, France; and European Theoretical Spectroscopy Facility (ETSF), 1348 Louvain-la-Neuve, Belgium
Miguel Alexandre Lopes Marques
Affiliation:
LPMCN, Université Claude Bernard Lyon I and CNRS, 69622 Villeurbanne, France; and European Theoretical Spectroscopy Facility (ETSF), 1348 Louvain-la-Neuve, Belgium
Ángel Rubio
Affiliation:
Departamento de Física de Materiales, Facultad de Ciencias Químicas, UPV/EHU, Centro Mixto CSIC-UPV/EHU and Donostia International Physics Center, San Sebastián, Spain
Xóchitl López-Lozano
Affiliation:
Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-0697
*
a)Address all correspondence to this author. e-mail: quevedin@gmail.com
Get access

Abstract

The structural, electronic, and magnetic properties of quasi-one-dimensional MoS2nanowires (NWs), passivated by extra sulfur, have been determined using ab initio density functional theory. The nanostructures were simulated using several different models based on experimental electron microscopy images and theoretical literature. It is found that independently of the geometrical details and the coverage of extra sulfur at the Mo edge, quasi-one-dimensional metallic states are predominant in all the low-energy model structures despite their reduced dimensionality. These metallic states are localized mainly at the edges. However, the electronic and magnetic character of the NWs does not depend only on the S saturation but also on the symmetry configuration of the S edge atoms. Our results show that for the same S saturation, the magnetization can be decreased by increasing the pairing of the S and Mo edge atoms. In spite of the observed pairing of S dimers at the Mo edge, the NWs do not experience a Peierls-like metal–insulator transition.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Donath, E.E.: History of catalysis in coal liquefaction catalysis. Sci. Technol. 3, 1 (1982).Google Scholar
Song, C.: An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today. 86(1–4), 211 (2000).CrossRefGoogle Scholar
Raybaud, P., Hafner, J., Kresse, G., Kasztelan, S., and Toulhoat, H.: Ab initio study of the H2–H2S/MoS2 gas–solid interface: The nature of the catalytically active sites. J. Catal. 189(1), 129 (2000).CrossRefGoogle Scholar
Raybaud, P., Hafner, J., Kresse, G., and Toulhoat, H.: Structural and electronic properties of the MoS2(1010) edge-surface. Surf. Sci. 407(1–3), 237 (1998).CrossRefGoogle Scholar
Helveg, S., Lauritsen, J.V., Lægsgaard, E., Stensgaard, I., Nørskov, J.K., Clausen, B.S., Topsøe, H., and Besenbacher, F.: Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 84(5), 951 (2000).CrossRefGoogle ScholarPubMed
Bollinger, M.V., Lauritsen, J.V., Jacobsen, K.W., Nøtrskov, J.K., Helveg, S., and Besenbacher, F.: One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 87(19), 196803/1 (2001).CrossRefGoogle ScholarPubMed
Bollinger, M., Jacobsen, K., and Nørskov, J.: Atomic and electronic structure of MoS2 nanoparticles. Phys. Rev. B 67(8), 085410 (2003).CrossRefGoogle Scholar
Lauritsen, J.V., Bollinger, M.V., Lægsgaard, E., Jacobsen, K.W., Nørskov, J.K., Clausen, B.S., Topsøe, H., and Besenbacher, F.: Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J. Catal. 221(2), 510 (2004).CrossRefGoogle Scholar
Lauritsen, J.V., Kibsgaard, J., Helveg, S., Topsoe, H., Clausen, B.S., Laegsgaard, E., and Besenbacher, F.: Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2(1), 53 (2007).CrossRefGoogle ScholarPubMed
Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., and Chorkendorff, I.: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834), 100 (2007).CrossRefGoogle ScholarPubMed
Zuriaga-Monroy, C., Martínez-Magadán, J-M., Ramos, E., and Gómez-Balderas, R.: A DFT study of the electronic structure of cobalt and nickel mono-substituted MoS2 triangular nanosized clusters. J. Mol. Catal. A: Chem. 313(1–2), 49 (2009).CrossRefGoogle Scholar
Zak, A., Feldman, Y., Lyakhovitskaya, V., Leitus, G., Popovitz-Biro, R., Wachtel, E., Cohen, H., Reich, S., and Tenne, R.: Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 124(17), 4747 (2002).CrossRefGoogle Scholar
Li, T. and Galli, G.: Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111(44), 16192 (2007).CrossRefGoogle Scholar
Seifert, G.: Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85(1), 146 (2000).CrossRefGoogle ScholarPubMed
Nath, M., Govindaraj, A., and Rao, C.N.R.: Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mater. 13(4), 283 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
Gloskovskii, A., Nepijko, S.A., Cinchetti, M., Schonhense, G., Fecher, G.H., Kandpal, H.C., Felser, C., Therese, H.A., Zink, N., Tremel, W., and Oelsner, A.: Time-of-flight photoelectron spectromicroscopy of single MoS2 nanotubes. J. Appl. Phys. 100(8), 084330 (2006).CrossRefGoogle Scholar
Verstraete, M. and Charlier, J.C.: Ab initio study of MoS2 nanotube bundles. Phys. Rev. B 68(4), 045423 (2003).CrossRefGoogle Scholar
Kibsgaard, J., Tuxen, A., Levisen, M., Laegsgaard, E., Gemming, S., Seifert, G., Lauritsen, J.V., and Besenbacher, F.: Atomic-scale structure of Mo6S6 nanowires. Nano Lett. 8(11), 3928 (2008).CrossRefGoogle ScholarPubMed
Galvan, D.H., Deepak, F.L., Esparza, R., Posada-Amarillas, A., Núñez-González, R., López-Lozano, X., and José-Yacamán, M.: Experimental and theoretical properties of S–Mo–Co–S clusters. Appl. Catal., A 397(1–2), 46 (2011).CrossRefGoogle Scholar
Deepak, F.L., Esparza, R., Borges, B., López-Lozano, X., and Jose-Yacaman, M.: Rippled and helical MoS2 nanowire catalysts: An aberration corrected STEM study. Catal. Lett. 141(4), 518 (2011).CrossRefGoogle Scholar
Deepak, F.L., Esparza, R., Borges, B., Lopez-Lozano, X., and Jose-Yacaman, M.: Direct imaging and identification of individual dopant atoms in MoS2 and WS2 catalysts by aberration corrected scanning transmission electron microscopy. ACS Catal. 1(5), 537 (2011).CrossRefGoogle Scholar
Popov, I., Gemming, S., Okano, S., Ranjan, N., and Seifert, G.: Electromechanical switch based on Mo6S6 nanowires. Nano Lett. 8(12), 4093 (2008).CrossRefGoogle ScholarPubMed
Li, Q., Newberg, J.T., Walter, E.C., Hemminger, J.C., and Penner, R.M.: Polycrystalline molybdenum disulfide (2H−MoS2) nano- and microribbons by electrochemical/chemical synthesis. Nano Lett. 4(2), 277 (2004).CrossRefGoogle Scholar
Li, Y., Zhou, Z., Zhang, S., and Chen, Z.: MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130(49), 16739 (2008).CrossRefGoogle ScholarPubMed
Botello-Mendez, A.R., Lopez-Urias, F., Terrones, M., and Terrones, H.: Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology 20(32), 325703 (2009).CrossRefGoogle ScholarPubMed
Shidpour, R. and Manteghian, M.: The creation of the magnetic and metallic characteristics in low-width MoS2 nanoribbon (1D MoS2): A DFT study. Chem. Phys. 360(1–3), 97 (2009).CrossRefGoogle Scholar
Shidpour, R. and Manteghian, M.: A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy. Nanoscale 2(8), 1429 (2010).CrossRefGoogle ScholarPubMed
Wang, Z., Li, H., Liu, Z., Shi, Z., Lu, J., Suenaga, K., Joung, S-K., Okazaki, T., Gu, Z., Zhou, J., Gao, Z., Li, G., Sanvito, S., Wang, E., and Iijima, S.: Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. J. Am. Chem. Soc. 132(39), 13840 (2010).CrossRefGoogle ScholarPubMed
Ataca, C., Sahin, H., Akturk, E. and Ciraci, S.: Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 115(10), 3934 (2011).CrossRefGoogle Scholar
Erdogan, E., Popov, I.H., Enyashin, A.N., and Seifert, G.: Transport properties of MoS2 nanoribbons: Edge priority. Eur. Phys. J. B 85(1), 33 (2012).CrossRefGoogle Scholar
Camacho-Bragado, G.A., Elechiguerra, J.L., Olivas, A., Fuentes, S., Galvan, D., and Yacaman, M.J.: Structure and catalytic properties of nanostructured molybdenum sulfides. J. Catal. 234(1), 182 (2005).CrossRefGoogle Scholar
Camacho-Bragado, G.A. and Jose-Yacaman, M.: Self-assembly of molybdite nanoribbons. Appl. Phys. A 82(1), 19 (2006).CrossRefGoogle Scholar
Bertram, N., Cordes, J., Kim, Y.D., Gantefor, G., Gemming, S., and Seifert, G.: Nanoplatelets made from MoS2 and WS2. Chem. Phys. Lett. 418(1–3), 36 (2006).CrossRefGoogle Scholar
Elizondo-Villarreal, N., Velázquez-Castillo, R., Galván, D.H., Camacho, A., and José Yacamán, M.: Structure and catalytic properties of molybdenum sulfide nanoplatelets. Appl. Catal., A 328(1), 88 (2007).CrossRefGoogle Scholar
Camacho-Bragado, G.A., Elechiguerra, J.L., and Yacaman, M.J.: Characterization of low dimensional molybdenum sulfide nanostructures. Mater. Charact. 59, 204 (2008).CrossRefGoogle Scholar
Galvan, D.H., Amarillas, A.P., and Jose-Yacaman, M.: Metallic states at the edges of MoS2 clusters. Catal. Lett. 132(3–4), 323 (2009).CrossRefGoogle Scholar
Byskov, L.S., Norskov, J.K., Clausen, B.S., and Topsoe, H.: DFT calculations of unpromoted and promoted MoS2based hydrodesulfurization catalysts. J. Catal. 187(1), 109 (1999).CrossRefGoogle Scholar
Lauritsen, J.V., Nyberg, M., Vang, R.T., Bollinger, M., Clausen, B., Topsøe, H., Jacobsen, K.W., Lægsgaard, E., Nørskov, J., and Besenbacher, F.: Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters. Nanotechnology 14(3), 385 (2003).CrossRefGoogle Scholar
Byskov, L.S., Norskov, J.K., Clausen, B.S., and Topsoe, H.: Edge termination of MoS2 and CoMoS catalyst particles. Catal. Lett. 64(2–4), 95 (2000).CrossRefGoogle Scholar
Liu, Z., Suenaga, K., Wang, Z., Shi, Z., Okunishi, E., and Iijima, S.: Identification of active atomic defects in a monolayered tungsten disulphide nanoribbon. Nat. Commun. 2, 213 (2011).CrossRefGoogle Scholar
Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., and Ryu, S.: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695 (2010).CrossRefGoogle ScholarPubMed
Spirko, J.A., Neiman, M.L., Oelker, A.M., and Klier, K.: Electronic structure and reactivity of defect MoS2: I. Relative stabilities of clusters and edges, and electronic surface states. Surf. Sci. 542(3), 192 (2003).CrossRefGoogle Scholar
Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14(11), 2745 (2002).CrossRefGoogle Scholar
Zhang, J., Soon, J.M., Loh, K.P., Yin, J., Ding, J., Sullivian, M.B., and Wu, P.: Magnetic molybdenum disulfide nanosheet films. Nano Lett. 7(8), 2370 (2007).CrossRefGoogle ScholarPubMed
Rao, C.N.R., Matte, H.S.S.R., Subrahmanyam, K.S., and Maitra, U.: Unusual magnetic properties of graphene and related materials. Chem. Sci. 3(1), 45 (2012).CrossRefGoogle Scholar
Tongay, S., Varnoosfaderani, S.S., Appleton, B.R., Wu, J., and Hebard, A.F.: Magnetic properties of MoS2: Existence of ferromagnetism. Appl. Phys. Lett. 101(12), 123105 (2012).CrossRefGoogle Scholar
Mathew, S., Gopinadhan, K., Chan, T.K., Yu, X.J., Zhan, D., Cao, L., Rusydi, A., Breese, M.B.H., Dhar, S., Shen, Z.X., Venkatesan, T., and Thong, J.T.L.: Magnetism in MoS2 induced by proton irradiation. Appl. Phys. Lett. 101(10), 102103 (2012).CrossRefGoogle Scholar
Peierls, R.: Quantum Theory of Solids (Clarendon Press, Oxford, UK, 1964).Google Scholar
Rycerz, A., Tworzydlo, J., and Beenakker, C.W.J.: Valley filter and valley valve in graphene. Nat. Phys. 3(3), 172 (2007).CrossRefGoogle Scholar
Son, Y-W., Cohen, M.L., and Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444(7117), 347 (2006).CrossRefGoogle ScholarPubMed
Yao, W., Yang, S.A., and Niu, Q.: Edge states in graphene: From gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102(9), 096801 (2009).CrossRefGoogle ScholarPubMed
Koch, C.T.: Determination of Core Structure Periodicity and Point Defect Density along Dislocations (Arizona State University, Tempe, AZ, 2002).Google Scholar
Supplementary material: Image

Seivane Supplementary Material

Figure 1

Download Seivane Supplementary Material(Image)
Image 145.9 KB
Supplementary material: File

Seivane Supplementary Material

Figure 2

Download Seivane Supplementary Material(File)
File 993.4 KB
Supplementary material: Image

Seivane Supplementary Material

Figure 3

Download Seivane Supplementary Material(Image)
Image 1.9 MB
Supplementary material: Image

Seivane Supplementary Material

Figure 4

Download Seivane Supplementary Material(Image)
Image 1.2 MB