Hostname: page-component-76dd75c94c-h9cmj Total loading time: 0 Render date: 2024-04-30T07:33:20.563Z Has data issue: false hasContentIssue false

Continuum modeling of large-strain deformation modes in gold nanowires

Published online by Cambridge University Press:  07 June 2011

Omid Rezvanian
Affiliation:
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910
Mohammed A. Zikry*
Affiliation:
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910
*
a)Address all correspondence to this author. e-mail: zikry@ncsu.edu
Get access

Abstract

Metallic nanostructures and specifically nanowires can be used for technological breakthroughs. Experimental measurements have provided insights on the mechanical properties of metallic nanostructures. In conjunction, modeling analyses provide an understanding of the underlying deformation and strengthening mechanisms in nanostructures. Most modeling studies on nanostructures are based on atomistic and molecular dynamics simulations, and though invaluable, they are limited to nanoscale dimensions of a few tens of nanometers, at small temporal scales, and physically unrealistic strain rates. Furthermore, most of the current applications for free-standing metallic nanostructures require high aspect ratios with at least one dimension greater than a few hundred nanometers. A continuum microstructurally based approach can, therefore, provide insights on design of one-dimensional nanowires on a physically relevant scale. Hence, we use a multiple-slip crystal plasticity formulation that is adapted to single crystal gold nanowires to simulate the experimental setup for a two-end fixed nanowire subjected to bending.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Marinov, T., Buldum, A., Clemons, C.B., Kreider, K.L., Young, G.W., and Hariharan, S.I.: Field emission from coated nanowires. J. Appl. Phys. 98, 044314 (2005).CrossRefGoogle Scholar
2.Lee, Y.-H. Choi, C.-H.: Jang, Y.-T., Kim, E.-K., Ju, B.-K., Min, N.-K., and Ahn, J.-H.: Tungsten nanowires and their field-emission properties. Appl. Phys. Lett. 81, 745 (2002).Google Scholar
3.Lee, C.-K., Lee, B., Ihm, J., and Han, S.: Field emission of metal nanowires studied by first-principle methods. Nanotechnology 18, 475706 (2007).CrossRefGoogle Scholar
4.Dong, L., Bush, J., Chirayos, V., Solanki, R., and Jiao, J.: Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett. 5, 2112 (2005).CrossRefGoogle ScholarPubMed
5.Yogeswaran, U. and Chen, S.-M.: A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors (Basel Switzerland) 8, 290 (2008).CrossRefGoogle ScholarPubMed
6.Walter, E.C., Penner, R.M., Liu, H., Ng, K.H., Zach, M.P., and Favier, F.: Sensors from electrodeposited metal nanowires. Surf. Interface Anal. 34, 409 (2002).CrossRefGoogle Scholar
7.Ko, Y.-D., Kang, J.-G., Park, J.-G., Lee, S., and Kim, D.-W.: Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 20, 455701 (2009).CrossRefGoogle ScholarPubMed
8.Lee, W.-K., Chen, S., Chilkoti, A., and Zauscher, S.: Fabrication of gold nanowires by electric-field-induced scanning probe lithography and in situ chemical development. Small 3, 249 (2007).CrossRefGoogle ScholarPubMed
9.Ji, R., Lee, W., Scholz, R., Gosele, U., and Nielsch, K.: Templated fabrication of nanowire and nanoring arrays based on interference lithography and electrochemical deposition. Adv. Mater. 18, 2593 (2006).Google Scholar
10.Sosnova, M.V., Dmitruk, N.L., Korovin, A.V., Mamykin, S.V., Mynko, V.I., and Lytvyn, O.S.: Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications. Appl. Phys. B 99, 493 (2010).Google Scholar
11.Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353 (2003).Google Scholar
12.Hyde, B., Espinosa, H.D., and Farkas, D.: An atomistic investigation of elastic and plastic properties of Au nanowires. JOM 5759, 62 (2005).Google Scholar
13.Park, H.S. and Zimmerman, J.A.: Modeling inelasticity and failure in gold nanowires. Phys. Rev. B 72, 054106 (2005).CrossRefGoogle Scholar
14.Gall, K., Diao, J., and Dunn, M.L.: The strength of gold nanowires. Nano Lett. 4, 2431 (2004).CrossRefGoogle Scholar
15.Crill, J.W., Ji, X., Irving, D.L., Brenner, D.W., and Padgett, C.W.: Atomic and multi-scale modeling of non-equilibrium dynamics at metal-metal contacts. Modell. Simul. Mater. Sci. Eng. 18, 034001 (2010).Google Scholar
16.Horstemeyer, M.F., Baskes, M.I., and Plimpton, S.J.: Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater. 49, 4363 (2001).Google Scholar
17.Timoshenko, S.P. and Goodier, J.N.: Theory of Elasticity (McGraw Hill Higher Education, New York; 3rd edition, 1970).Google Scholar
18.Li, X., Gao, H., Murphy, C.J., and Caswell, K.K.: Nanoindentation of silver nanowires. Nano Lett. 3, 1495 (2003).CrossRefGoogle Scholar
19.Rodrigues, V. and Ugarte, D.: Structural and electronic properties of gold nanowires. Eur. Phys. J. D 16, 395 (2001).Google Scholar
20.Agrait, N., Rubio, G., and Vieira, S.: Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 74, 3995 (1995).Google Scholar
21.Wong, E.W., Sheehan, P.E., and Lieber, C.M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997).CrossRefGoogle Scholar
22.Wu, B., Heidelberg, A., and Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525 (2005).CrossRefGoogle ScholarPubMed
23.Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).CrossRefGoogle Scholar
24.Rezvanian, O. and Zikry, M.A.: Inelastic contact behavior of crystalline asperities in rf MEMS devices. J. Eng. Mater. Technol. 131, 011002 (2009).CrossRefGoogle Scholar
25.Zikry, M.A. and Nemat-Nasser, S.: High strain-rate localization and failure of crystalline materials. Mech. Mater. 10, 215 (1990).Google Scholar
26.Rezvanian, O., Zikry, M.A., and Rajendran, A.M.: Statistically stored, geometrically necessary and grain boundary dislocation densities: Microstructural representation and modelling. Proc. R. Soc. Lond., Ser. A 463, 2833 (2007).Google Scholar
27.Zikry, M.A. and Kao, M.: Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids 44, 1765 (1996).CrossRefGoogle Scholar
28.Zhu, T., Li, J., Samanta, A., Leach, A., and Gall, K.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).CrossRefGoogle ScholarPubMed
29.Broyden, C.G.: The convergence of a class of double-rank minimization algorithms: 2. The new algorithm. J. Inst. Math. Appl. 6(3), 222 (1970).Google Scholar
30.Hughes, T.J.R.: Generalization of selective integration procedures to anisotropic and nonlinear media. Int. J. Numer. Methods Eng. 15, 1413 (1980).CrossRefGoogle Scholar
31.Dietiker, M., Nyilas, R.D., Solenthaler, C., and Spolenak, R.: Nanoindentation of single-crystalline gold thin films: Correlating hardness and the onset of plasticity. Acta Mater. 56, 3887 (2008).CrossRefGoogle Scholar
32.Hallmark, V.M., Chiang, S., Rabolt, J.F., Swalen, J.D., and Wilson, R.J.: Observation of atomic corrugation on Au (111) by scanning tunneling microscopy. Phys. Rev. Lett. 59, 2879 (1987).CrossRefGoogle ScholarPubMed
33.Champion, Y., Langlois, C., Guerin-Mailly, S., Langlois, P., Bonnentien, J.-L., and Hytch, M.J.: Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300, 310 (2003).Google Scholar
34.Shan, D.-B., Wang, C.-J., Guo, B., and Wang, X.-W.: Effect of thickness and grain size on material behavior in micro-bending. Trans. Nonferrous Met. Soc. China 19, 507 (2009).Google Scholar
35.Riaz, M., Fulati, A., Yang, L.L., Nur, O., Willander, M., and Klason, P.: Bending flexibility, kinking, and buckling characterization of ZnO nanorods/nanowires grown on different substrates by high and low temperature methods. J. Appl. Phys. 104, 104306 (2008).Google Scholar