Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-28T08:03:55.769Z Has data issue: false hasContentIssue false

Development of laser-based joining technology for the fabrication of ceramic thermoelectric modules

Published online by Cambridge University Press:  12 September 2014

Floriana-Dana Börner*
Institute of Power Engineering, TU Dresden, Dresden 01062, Germany
Max Schreier
Institute of Power Engineering, TU Dresden, Dresden 01062, Germany
Bing Feng
Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden 01277, Germany
Wolfgang Lippmann
Institute of Power Engineering, TU Dresden, Dresden 01062, Germany
Hans-Peter Martin
Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden 01277, Germany
Alexander Michaelis
Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden 01277, Germany
Antonio Hurtado
Institute of Power Engineering, TU Dresden, Dresden 01062, Germany
a)Address all correspondence to this author. e-mail:
Get access


The process of laser-induced brazing constitutes a potential option for connecting several ceramic components (n- and p-type ceramic bars and ceramic substrate) of a thermoelectric generator (TEG) unit. For the construction of the TEGs, TiOx and BxC were used as thermoelectric bars and AlN was used as substrate material. The required process time for joining is well below that of conventional furnace brazing processes and, furthermore, establishes the possibility of using a uniform filler system for all contacting points within the thermoelectric unit. In the work reported here, the application-specific optimization of the laser-joining process is presented as well as the adapted design of the thermoelectric modules. The properties of the produced bonding were characterized by using fatigue strength and microstructural investigations. Furthermore, the operational reliability of the modules was verified.

Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Rowe, D.M.: Generals principles and theoretical considerations. In Thermoelectrics Handbook: Macro to Nano, Rowe, D.M. ed.; Taylor & Francis: Boca Raton, USA, 2006; p. 1–1.Google Scholar
Sommerlatte, J., Nielsch, K., and Böttner, H.: Thermoelektrische Multitalente. Phys. J. 6, 35 (2007).Google Scholar
Maranville, C.W. and Schmitz, P.: Thermoelectric for waste heat recovery and climate control in automobiles. In Thermoelectrics Goes Automotive, Jänsch, D. ed.; Expert Verlag: Berlin, Germany, 2011; p. 1.Google Scholar
Zebatjadi, M.; Esfarjani, K., Dresselhaus, M.S., Ren, Z.F., and Chen, G.: Perspectives on thermoelectrics: From fundamentals to device applications. Energy Environ. Sci. 5, 5147 (2012).Google Scholar
Xi, X., Matijasevic, G., Ha, L., and Baxter, D.: Fabrication of thermoelectric modules using thermoelectric pastes and an additive technology. In Thermoelectric Materials, Tritt, T.M., Kanatzidis, M.G., Mahan, G.D., and Lyon, H.B. Jr. ed.; (MRS Proceedings 545, Boston, U.S.A., 1998), p. 143.Google Scholar
Lim, J.R., Whitacre, J.F., Fleurial, J-P., Huang, C-K., Ryan, M., and Myung, N.V.: Fabrication method for thermoelectric nanodevice. Adv. Mater. 17, 1488 (2005).Google Scholar
Noudem, J.G., Lemonnier, S., Prevel, M., Reddy, E.S., Guilmeau, E., and Goupil, C.: Thermoelectric ceramics for generators. J. Eur. Ceram. Soc. 28, 41 (2008).CrossRefGoogle Scholar
Jinushi, T., Okahara, M., Ishijima, Z., Shikata, H., and Kambe, M.: Development of the high performance thermoelectric modules for high temperature heat sources. In Materials Science Forum 534–536, Yoon, D.Y., Kang, S-J.L., Eun, K.Y., and Kim, Y-S. ed.; (Progress in Powder Metallurgy, Switzerland, 2007), p. 1521.Google Scholar
Muta, H., Kirosaki, K., and Yamanaka, S.: Thermoelectric properties of doped BaTiO3-SrTiO3 solid solution. J. Alloys Compd. 368, 22 (2004).Google Scholar
Muta, H., Ieda, A., Kurosaki, K., and Yamanaka, S.: Substitution effect on the thermoelectric properties of alkaline earth titanate. Mater. Lett. 58, 3868 (2004).Google Scholar
He, Q., Hao, Q., Chen, G., Poudel, B., Wang, X., Wang, D., and Ren, Z.: Thermoelectric property studies on bulk TiOx with x from 1 to 2. Appl. Phys. Lett. 91, 052505 (2007).Google Scholar
Mori, T. and Nishimura, T.: Thermoelectric properties of homologous p- and n-type boron-rich borides. J. Solid State Chem. 179, 2908 (2006).Google Scholar
Backhaus-Ricoult, M., Rustad, J.R., Vargheese, D., Dutta, I., and Work, K.: Levers for thermoelectric properties in titania-based ceramics. J. Electron. Mater. 41, 1636 (2012).Google Scholar
Okinaka, N. and Akiyama, T.: Thermoelectric properties of non-stoichiometric titanium oxides for waste heat recovery in steelworks. ISIJ Int. 50, 1296 (2010).Google Scholar
Lee, D-K., Jeon, J-I., Kim, M-H., Choi, W., and Yoo, H-I.: Oxygen nonstoichiometry (δ) of TiO2-δ revisited. J. Solid State Chem. 178, 185 (2005).Google Scholar
Bartholomew, R.F. and Frankl, D.R.: Electrical properties of some titanium oxides. Phys. Rev. 187, 828 (1969).Google Scholar
Tsuyumoto, I., Hosono, T., and Murata, M.: Thermoelectric power in nonstoichiometric orthorhombic titanium oxides. J. Am. Ceram. Soc. 89, 2301 (2006).Google Scholar
Smith, J.R., Clarke, R.L., and Walsh, F.C.: Electrodes based on Magneli phase titanium oxides: The properties and applications of Ebonex® materials. J. Appl. Electrochem. 28, 1021 (1998).Google Scholar
Werheit, H.: Thermoelectric properties of boron-rich solids and their possibilities of technical application. In Proceedings of the 25th International Conference on Thermoelectrics, ICT06, Rogl, P. ed.; IEEE, Vienna, Austria, 2006, p. 159.Google Scholar
Werheit, H.: Present knowledge of electronic properties and charge transport of icosahedral boron-rich solids. In J. Phys.: Conference Series, Vol. 176, Tanaka, T. ed.; (American Institute of Physics Inc., 16th International Symposium on Boron, Borides and Related Materials, Matsue, Japan, 2009), p. 012016.Google Scholar
Amin, D.: Unusual properties of icosahedral boron-rich solids. J. Solid State Chem. 179, 2791 (2006).Google Scholar
Thevenot, F.: Boron carbide – A comprehensive review. J. Eur. Ceram. Soc. 6, 205 (1990).Google Scholar
Domnich, V., Reynaud, S., Haber, R.A., and Chhowalla, M.: Boron carbide: Structure, properties, and stability under stress. J. Am. Ceram. Soc. 94, 3605 (2011).Google Scholar
Wood, C.: Boron carbides as high temperature thermoelectric materials. In Boron-Rich Solids, Emin, D. ed.; (AIP Conf. Proc. 140, Albuquergue, USA, 1986), p. 362.Google Scholar
Rowe, D.M.: Thermoelectrics and Its Energy Harvesting, 1st ed. (CRC Press, Boca Raton, USA, 2012), p. 14–1.Google Scholar
Funahashi, R., Urata, S., Mihara, T., Nabeshima, N., and Iwasaki, K.: Power generation using oxide thermoelectric modules. Adv. Sci. Technol. 46, 158 (2006).CrossRefGoogle Scholar
Fernie, J.A., Drew, R.A.L., and Knowles, M.: Joining of engineering ceramics. Int. Mater. Rev. 54, 283 (2009).Google Scholar
Naidich, J.V.: The wettability of solids by liquid metal. Prog. Surf. Membr. Sci. 14, 353 (1981).Google Scholar
Bach, Fr-W., Doege, E., Kutlu, I., and Huskic, A.: Aktivlöten von keramischen Segmenten für den Einsatz in verschleißkritischen Bereichen von Schmiedegesenken. Materialwiss. Werkstofftechn. 33, 673 (2002).Google Scholar
Lippmann, W., Herrmann, M., Hille, C., Hurtado, A., Reinecke, A-M., and Wolf, R.: Laser joining of ceramics. CFI-Ceram. Forum Int. (Sonderheft) 85, 60 (2008).Google Scholar
Heilmann, F., Rixecker, G., Börner, F-D., Lippmann, W., and Hurtado, A.: Fe2O3-doped forsterite ceramics as a joining partner for ZrO2 in a laser brazing process. J. Eur. Ceram. Soc. 29, 2783 (2009).Google Scholar
Börner, F-D., Lippmann, W., and Hurtado, A.: Laser-joined Al2O3 and ZrO2 ceramics for high-temperature applications. J. Nucl. Mater. 405, 1 (2010).Google Scholar
Koppitz, T., Federmann, D., Reichle, S., Reisgen, U., Remmel, J., and Zerfass, H.R.: Weiterentwicklung des Reactive-Air-Brazing als Fügetechnik für Werkstoffkombinationen der Hochtemperaturbrennstoffzelle. DVS-Ber. 243, 124 (2007).Google Scholar
Saitoh, O., Suzumura, A., Miyagawa, W., and Ogawa, H.: The erosion phenomena of silicon nitride at the brazed interface by active metal brazing filler. Q. J. Jpn. Weld. Soc. 18, 236 (2000).Google Scholar
Klose, H.: Beitrag zur Berechnung, Herstellung und Charakterisierung von verstärkten Aktivloten. Diss., TU Chemnitz, 1999.Google Scholar
Börner, F-D., Lippmann, W., Schreier, M., and Hurtado, A.: Entwicklung einer Technologie zum Laserfügen thermoelektrischer Generatoren aus Keramik. In Neue Werkstoffe und Technologien für nachhaltige Produkte und Prozesse, Hufenbach, W.A. and Gude, M. ed.; Verlag Wissenschaftliche Skripte, Dresden, Germany, 2012, p. 156.Google Scholar
Tillmann, W.: Fügen, in Technische Keramik, 1st ed.; Kollenberg, W. ed.; Vulkan-Verlag Essen: Germany, 2004; p. 445.Google Scholar
Yushanov, S.P., Gritter, L.T., Crompton, J.S., and Koppenhoefer, K.C.: Multiphysics analysis of thermoelectric phenomena. In Seventh Annual Conference on Multiphysics Modeling and Simulation, Sansone, L. ed.; (Proceedings of the 2011 COMSOL Conference, Boston, USA, 2011).Google Scholar
Poulain, G., Blanc, D., Kaminski, A., Semmache, B., and Lemiti, M.: Modeling of a laser processing for advanced silicon solar cells. In Sixth Annual Conference on Multiphysics Modeling and Simulation, Rao, Y. ed.; Proceedings of the European COMSOL Conference 2010, Paris, France. (Beuth Verlag GmbH, Germany, 2010).Google Scholar
DIN 843–851: European Standard/Monolithic Ceramics. Mechanical Properties at Room Temperature. Part 1: Determination of Flexural Strength, 1995.Google Scholar