Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-19T04:25:35.708Z Has data issue: false hasContentIssue false

Effect of microstructural heterogeneity on the mechanical behavior of nanocrystalline metal films

Published online by Cambridge University Press:  11 October 2011

Jagannathan Rajagopalan
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
M. Taher A. Saif*
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
a)Address all correspondence to this author. e-mail:
Get access


Conventionally, mean grain size is considered the most critical microstructural parameter in determining the mechanical behavior of pure metals. By systematically controlling the distribution of grain orientations in aluminum films, we show that microstructural heterogeneity alone induces large variation in the mechanical behavior of nanocrystalline metal films. Aluminum films with relatively homogeneous microstructure (all grains with identical out-of-plane orientation) show substantially less early Bauschinger effect compared to films with heterogeneous microstructure, irrespective of film thickness or grain size. On the other hand, the films with homogeneous microstructure show relatively higher yield stresses. A direct correspondence is found between the nonuniformity of plastic deformation and early Bauschinger effect, which confirms the critical role of microstructural heterogeneity.

Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Hall, E.O.: The deformation and ageing of mild steel: III. Discussion of results. Proc. Phys. Soc. B 64(9), 747 (1951).CrossRefGoogle Scholar
2.Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).Google Scholar
3.Kumar, K.S., Van Swygenhoven, H., and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).CrossRefGoogle Scholar
4.Van Swygenhoven, H. and Weertman, J.R.: Deformation in nanocrystalline metals. Mater. Today 9, 24 (2006).CrossRefGoogle Scholar
5.Legros, M., Gianola, D.S., and Hemker, K.J.: In situ tem observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56, 3380 (2008).CrossRefGoogle Scholar
6.Lu, L., Sui, M.L., and Lu, K.: Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463 (2000).CrossRefGoogle ScholarPubMed
7.Jiang, Z., Liu, X., Li, G., Jiang, Q., and Lian, J.: Strain rate sensitivity of a nanocrystalline cu synthesized by electric brush plating. Appl. Phys. Lett. 88, 143115 (2006).CrossRefGoogle Scholar
8.Wu, X., Zhu, Y.T., Chen, M.W., and Ma, E.: Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scr. Mater. 54, 16851690 (2006).CrossRefGoogle Scholar
9.Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).CrossRefGoogle Scholar
10.Wang, Y.M., Hamza, A.V., and Ma, E.: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 (2006).CrossRefGoogle Scholar
11.Zhang, K., Weertman, J.R., and Eastman, J.A.: Rapid stress-driven grain coarsening in nanocrystalline cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87, 061921 (2005).CrossRefGoogle Scholar
12.Gianola, D.S., Van Petegem, S., Legros, M., Brandstetter, S., Van Swygenhoven, H., and Hemker, K.J.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).CrossRefGoogle Scholar
13.Rajagopalan, J., Han, J.H., and Saif, M.T.A.: Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 315, 1831 (2007).CrossRefGoogle ScholarPubMed
14.Rajagopalan, J., Han, J.H., and Saif, M.T.A.: On plastic strain recovery in freestanding nanocrystalline metal films. Scr. Mater. 59, 921 (2008).CrossRefGoogle Scholar
15.Saada, G.: Hall-Petch revisited. Mater. Sci. Eng., A 400401, 146 (2005).CrossRefGoogle Scholar
16.Bitzek, E., Derlet, P.M., Anderson, P.M., and Van Swygenhoven, H.: The stress–strain response of nanocrystalline metals: A statistical analysis of atomistic simulations. Acta Mater. 56, 4846 (2008).CrossRefGoogle Scholar
17.Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
18.Li, X., Wei, Y., Yang, W., and Gao, H.: Competing grain-boundary-and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum. Proc. Natl. Acad. Sci. U.S.A. 106, 16108 (2009).CrossRefGoogle ScholarPubMed
19.Lonardelli, I., Almer, J., Ischia, G., Menapace, C., and Molinari, A.: Deformation behavior in bulk nanocrystalline-ultrafine aluminum: In situ evidence of plastic strain recovery. Scr. Mater. 60, 520 (2009).CrossRefGoogle Scholar
20.Niwa, H. and Kato, M.: Epitaxial growth of Al on Si (001) by sputtering. Appl. Phys. Lett. 59, 543 (1991).CrossRefGoogle Scholar
21.Han, J.H. and Saif, M.T.A.: In situ microtensile stage for electromechanical characterization of nanoscale freestanding films. Rev. Sci. Instrum. 77, 045102 (2006).CrossRefGoogle Scholar
22.Xiang, Y. and Vlassak, J.J.: Bauschinger and size effects in thin-film plasticity. Acta Mater. 54, 5449 (2006).CrossRefGoogle Scholar
23.Rajagopalan, J., Han, J.H., and Saif, M.T.A.: Bauschinger effect in unpassivated freestanding nanoscale metal films. Scr. Mater. 59, 734 (2008).CrossRefGoogle Scholar
24.Baker, S.P., Kretschmann, A., and Arzt, E.: Thermomechanical behavior of different texture components in cu thin films. Acta Mater. 49, 2145 (2001).CrossRefGoogle Scholar
25.Christodoulou, N., Woo, O.T., and Macewen, S.R.: Effect of stress reversals on the work hardening behaviour of polycrystalline copper. Acta Metall. 34, 1553 (1986).CrossRefGoogle Scholar
26.Pedersen, O.B., Brown, L.M., and Stobbs, W.M.: The Bauschinger effect in copper. Acta Metall. 29, 1843 (1981).CrossRefGoogle Scholar
27.Berbenni, S., Favier, V., and Berveiller, M.: Impact of the grain size distribution on the yield stress of heterogeneous materials. Int. J. Plast. 23, 114 (2007).CrossRefGoogle Scholar
28.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
29.Zhu, B., Asaro, R.J., Krysl, P., and Bailey, R.: Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater. 53, 4825 (2005).CrossRefGoogle Scholar
30.Zhu, B., Asaro, R.J., Krysl, P., and Bailey, R.: Effects of grain size distribution on the mechanical response of nanocrystalline metals: Part II. Acta Mater. 54, 3307 (2006).CrossRefGoogle Scholar
31.Shishvan, S.S., Nicola, L., and Van der Giessen, E.: Bauschinger effect in unpassivated freestanding thin films. J. Appl. Phys. 107, 093529 (2010).CrossRefGoogle Scholar
32.Thilly, L., Renault, P.O., Van Petegem, S., Brandstetter, S., Schmitt, B., Van Swygenhoven, H., Vidal, V., and Lecouturier, F.: Evidence of internal Bauschinger test in nanocomposite wires during in situ macroscopic tensile cycling under synchrotron beam. Appl. Phys. Lett. 90, 241907 (2007).CrossRefGoogle Scholar
33.Thilly, L., Van Petegem, S., Renault, P-O., Lecouturier, F., Vidal, V., Schmitt, B., and Van Swygenhoven, H.: A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on CuNb nanocomposite wires. Acta Mater. 57, 3157 (2009).CrossRefGoogle Scholar
34.Rajagopalan, J., Rentenberger, C., Karnthaler, H.P., Dehm, G., and Saif, M.T.A.: In situ TEM study of microplasticity and Bauschinger effect in nanocrystalline metals. Acta Mater. 58, 4772 (2010).CrossRefGoogle Scholar