Hostname: page-component-797576ffbb-jhnrh Total loading time: 0 Render date: 2023-12-05T01:35:27.626Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Elastic modulus of single-crystal GaN nanowires

Published online by Cambridge University Press:  03 March 2011

Hai Ni
Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208
Xiaodong Li*
Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208
Guosheng Cheng
Departments of Electrical Engineering and Applied Physics, Yale University, New Haven, Connecticut 06520
Robert Klie
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973
a) Address all correspondence to this author. e-mail:
Get access


The deformation behavior of single-crystal GaN nanowires was studied by directly performing three-point bending tests on each individual nanowire in an atomic force microscope. The elastic modulus calculated from the load–displacement response of the nanowires was 43.9 ± 2.2 GPa. Single-crystal GaN nanowires investigated in this study were synthesized by chemical vapor deposition techniques based on the vapor–liquid–solid growth mechanism and had a diameter range from 60 to 110 nm. Crystalline GaN nanowires did not show obvious plastic deformation in bending and usually failed in a brittle manner.

Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Stach, E.A., Pauzauskie, P.J., Kuykendall, T., Goldberger, J., He, R.R., Yang, P.D.: Watching GaN nanowires grow. Nano Lett. 3, 867 (2003).Google Scholar
2.Cheng, G.S., Kolmakov, A., Zhang, Y.X., Moskovits, M., Munden, R., Reed, M.A., Wang, G.M., Moses, D., Zhang, J.P.: Current rectification in a single GaN nanowire with a well-defined p-n junction. Appl. Phys. Lett. 83, 1578 (2003).Google Scholar
3.Gradečak, S., Qian, F., Li, Y., Park, H.G., Lieber, C.M.: GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 87, 173111 (2005).Google Scholar
4.Hu, J.Q., Jiang, Y., Meng, X.M., Lee, C.S., Lee, S.T.: A simple large-scale synthesis of very long aligned silica nanowires. Chem. Phys. Lett. 367, 339 (2003).Google Scholar
5.Liu, Z.Q., Xie, S.S., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, C.Y., Liu, W., Li, Y.B., Zou, X.P., Wang, G.: Synthesis of alpha-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate. J. Mater. Res. 16, 683 (2001).Google Scholar
6.Yu, D.P., Hang, Q.L., Ding, Y., Zhang, H.Z., Bai, Z.G., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C., Feng, S.Q.: Amorphous silica nanowires: Intensive blue light emitters. Appl. Phys. Lett. 73, 3076 (1998).Google Scholar
7.Zhang, M., Bando, Y., Wada, K., Kurashima, K.: Synthesis of nanotubes and nanowires of silicon oxide. J. Mater. Sci. Lett. 18, 1999 (1911).Google Scholar
8.Liang, C.H., Zhang, L.D., Meng, G.W., Wang, Y.W., Chu, Z.Q.: Preparation and characterization of amorphous SiOx nanowires. J. Non-Cryst. Solids 277, 63 (2000).Google Scholar
9.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).Google Scholar
10.Martin, C.R.: Nanomaterials—A membrane-based synthetic approach. Science 266, 1961 (1994).Google Scholar
11.Niu, J.J., Sha, J., Ma, X.Y., Xu, J., Yang, D.: Array-orderly single crystalline silicon nano-wires. Chem. Phys. Lett. 367, 528 (2003).Google Scholar
12.Shi, W.S., Peng, H.Y., Zheng, Y.F., Wang, N., Shang, N.G., Pan, Z.W., Lee, C.S., Lee, S.T.: Synthesis of large areas of highly oriented, very long silicon nanowires. Adv. Mater. 12, 1343 (2000).Google Scholar
13.Zheng, B., Wu, Y.Y., Yang, P., Liu, J.: Synthesis of ultra-long and highly oriented silicon oxide nanowires from liquid alloys. Adv. Mater. 14, 122 (2002).Google Scholar
14.Cheng, G.S., Zhang, L.D., Zhu, Y., Fei, G.T., Li, L., Mo, C.M., Mao, Y.Q.: Large-scale synthesis of single crystalline gallium nitride nanowires. Appl. Phys. Lett. 75, 2455 (1999).Google Scholar
15.Fasol, G.: Room-temperature blue gallium nitride laser diode. Science 272, 1751 (1996).Google Scholar
16.Gao, P.X., Ding, Y., Wang, Z.L.: Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Lett. 3, 1315 (2003).Google Scholar
17.Yi, G.C., Wang, C.R., Park, W.I.: ZnO nanorods: Synthesis, characterization and applications. Semicond. Sci. Technol. 20 S22(2005).Google Scholar
18.Chen, Y.F., Wang, R.M., Zhang, H.Z., Sun, X.C., Zhang, Z.S., Xing, Y.J., Yu, D.P.: TEM investigations on ZnO nanobelts synthesized via a vapor phase growth. Micron. 35, 481 (2004).Google Scholar
19.Hughes, W.L., Wang, Z.L.: Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl. Phys. Lett. 86, 043106 (2005).Google Scholar
20.Morkoc, H., Mohammad, S.N.: High-luminousity blue and blue-green gallium nitride light-emitting diodes. Science 267, 51 (1995).Google Scholar
21.Ponce, F.A., Bour, D.P.: Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351 (1997).Google Scholar
22.Stern, E., Cheng, G., Cimpoiasu, E., Klie, R., Guthrie, S., Klemic, J., Kretzschmar, I., Steinlauf, E., Turner-Evans, D., Broomfield, E., Hyland, J., Koudelka, R., Boone, T., Young, M., Sanders, A., Munden, R., Lee, T., Routenberg, D., Reed, M.A.: Electrical characterization of single GaN nanowires. Nanotech. 16, 2941 (2005).Google Scholar
23.Huang, Y., Duan, X.F., Cui, Y., Lieber, C.M.: Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002).Google Scholar
24.Kim, J.R., So, H.M., Park, J.W., Kim, J.J., Kim, J., Lee, C.J., Lyu, S.C.: Electrical transport properties of individual gallium nitride nanowires synthesized by chemical-vapor-deposition. Appl. Phys. Lett. 80, 3548 (2002).Google Scholar
25.Kim, H.M., Kim, D.S., Park, Y.S., Kim, D.Y., Kang, T.W., Chang, K.S.: Growth of GaN nanorods by a hydride vapor-phase epitaxy method. Adv. Mater. 14, 991 (2002).Google Scholar
26.Huang, Y., Duan, X.F., Cui, Y., Lauhon, L.J., Kim, K.H., Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).Google Scholar
27.Huang, Y., Duan, X.F., Wei, Q.Q., Lieber, M.: Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630 (2001).Google Scholar
28.Johnson, J.C., Choi, H.J., Knutsen, K.P., Schaller, R.D., Yang, P.D., Saykally, R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106 (2002).Google Scholar
29.Nakamura, S., Pearton, S., Fasol, G.: The Blue Laser Diode: The Complete Story (Springer, Berlin, Germany, 2000), p. 103.Google Scholar
30.Ding, W., Dikin, D.A., Chen, X., Piner, R.D., Ruoff, R.S., Zussman, E., Wang, X., Li, X.: Mechanics of hydrogenated amorphous carbon deposits from electron-beam-induced deposition of a paraffin precursor. J. Appl. Phys. 98, 014905 (2005).Google Scholar
31.Ni, H., Li, X.D., Gao, H.S.: Elastic modulus of amorphous SiO2 nanowires. Appl. Phys. Lett. 88, 043108 (2006).Google Scholar
32.Li, X.D., Wang, X.N., Xiong, Q.H., Eklund, P.C.: Mechanical properties of ZnS nanobelts. Nano Lett. 5, 2005 (1982).Google Scholar
33.Ni, H., Li, X.D.Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotech. 17, 3591 (2006).Google Scholar
34.Li, X.D., Bhushan, B.: Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Surf. Coat. Technol. 163, 521 (2003).Google Scholar
35.Namazu, T., Isono, Y., Tanka, T.: Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 9, 450 (2000).Google Scholar
36.Wu, B., Heidelberg, A., Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525 (2005).Google Scholar
37.Nowak, R., Pessa, M., Suganuma, M., Leszczynski, M., Grzegory, I., Porowski, S., Yoshida, F.: Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal. Appl. Phys. Lett. 75, 2070 (1999).Google Scholar
38.Schwarz, R.B., Khachaturyan, K., Weber, E.R.: Elastic moduli of gallium nitride. Appl. Phys. Lett. 70, 1122 (1997).Google Scholar