Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-30T06:47:52.984Z Has data issue: false hasContentIssue false

Electro-assisted ammonium persulfate activation to promote the introduction of N and S into TiO2 film: Enhancing its photoelectrocatalytic performance under solar

Published online by Cambridge University Press:  20 September 2019

Changxin Li
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Yan Liu
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Yanzong Zhang*
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Lulu Long
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; and Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Fei Shen
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; and Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Gang Yang
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; and Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Xiaohong Zhang
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Yan He
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Lilin Wang
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Shihuai Deng
Affiliation:
College of Environment, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; and Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
*
a)Address all correspondence to this author. e-mail: yzzhang@sicau.edu.cn
Get access

Abstract

Anatase phase NOx/S6+–TiO2 (x= 0, 1) film with high solar-driven activity has been successfully prepared via electro-assisted oxidation processes. The morphological and structural properties of the film were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, while the optical property was detected by UV-vis-NIR absorption spectroscopy. The results showed that the NOx/S6+–TiO2 film was composed of “flower-like” microvoids structure and displayed broad and strong optical absorption at around 544 and 1500 nm. Transient photocurrent response, photoluminescence spectroscopy, and electrochemical impedance spectroscopy indicated that the generation and separation of photogenerated charges were significantly enhanced under simulated solar irradiation. The NOx/S6+–TiO2 film exhibited excellent photoelectrocatalytic activity for the degradation of methyl orange (MO), and the decoloration rate and TOC removal respectively reached 98.97 and 59.44% at 20 min under solar irradiation. The film still had good stability after reusing ten times. Furthermore, a possible mechanism of photoelectrocatalysis was suggested in MO degradation by using NOx/S6+–TiO2 film.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindha, A. and Sivakumar, T.: Visible active N,S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. J. Photochem. Photobiol., A 340, 146 (2017).10.1016/j.jphotochem.2017.03.010CrossRefGoogle Scholar
Li, X., Xie, J., Jiang, C., Yu, J., and Zhang, P.: Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018).CrossRefGoogle Scholar
Garcia-Segura, S. and Brillas, E.: Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol., C 31, 1 (2017).10.1016/j.jphotochemrev.2017.01.005CrossRefGoogle Scholar
Liu, C., Ding, Y., Wu, W., and Teng, Y.: A simple and effective strategy to fast remove chromium(VI) and organic pollutant in photoelectrocatalytic process at low voltage. Chem. Eng. J. 306, 22 (2016).CrossRefGoogle Scholar
Wang, Q., Zhu, N., Liu, E., Zhang, C., Crittenden, J.C., Zhang, Y., and Cong, Y.: Fabrication of visible-light active Fe2O3-GQDs/NF-TiO2 composite film with highly enhanced photoelectrocatalytic performance. Appl. Catal., B 205, 347 (2017).CrossRefGoogle Scholar
Lyu, Z., Liu, B., Wang, R., and Tian, L.: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of (001) facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).10.1557/jmr.2017.232CrossRefGoogle Scholar
Zhou, X., Zheng, Y., Zhou, J., and Zhou, S.: Degradation kinetics of photoelectrocatalysis on landfill leachate using codoped TiO2/Ti photoelectrodes. J. Nanomater. 2015, 7 (2015).CrossRefGoogle Scholar
Kmentová, H., Nandan, D., Kment, Š., Naldoni, A., Gawande, M.B., Hubička, Z., and Zbořil, R.: Significant enhancement of photoactivity in one-dimensional TiO2 nanorods modified by S-, N-, O-doped carbon nanosheets. Catal. Today 328, 111 (2019).10.1016/j.cattod.2019.01.024CrossRefGoogle Scholar
Rahimi, N., Pax, R.A., and Gray, E.M.: Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Chem. 44, 86 (2016).CrossRefGoogle Scholar
Li, C., Zhao, Z., Shindume Lomboleni, H., Huang, H., and Peng, Z.: Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J. Mater. Res. 32, 737 (2016).10.1557/jmr.2016.448CrossRefGoogle Scholar
Daghrir, R., Drogui, P., Delegan, N., and El-Khakani, M.A.: Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2 photoanode under sunlight irradiations. Water Res. 47, 6801 (2013).CrossRefGoogle ScholarPubMed
Umebayashi, T., Yamaki, T., Itoh, H., and Asai, K.: Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454 (2002).CrossRefGoogle Scholar
Andoshe, D.M., Yim, K., Sohn, W., Kim, C., Kim, T.L., Kwon, K.C., Hong, K., Choi, S., Moon, C.W., Hong, S-P., Han, S., and Jang, H-W.: One-pot synthesis of sulfur and nitrogen codoped titanium dioxide nanorod arrays for superior photoelectrochemical water oxidation. Appl. Catal., B 234, 213 (2018).10.1016/j.apcatb.2018.04.045CrossRefGoogle Scholar
Chen, X. and Burda, C.: Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J. Phys. Chem. B 108, 15446 (2004).10.1021/jp0469160CrossRefGoogle Scholar
Asahi, R. and Morikawa, T.: Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis. Chem. Phys. 339, 57 (2007).CrossRefGoogle Scholar
Momeni, M.M., Ghayeb, Y., and Ghonchegi, Z.: Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J. Solid State Electrochem. 19, 1359 (2015).CrossRefGoogle Scholar
Chen, W-S. and Huang, C-P.: Mineralization of aniline in aqueous solution by electrochemical activation of persulfate. Chemosphere 125, 175 (2015).CrossRefGoogle ScholarPubMed
Deng, Y. and Ezyske, C.M.: Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res. 45, 6189 (2011).10.1016/j.watres.2011.09.015CrossRefGoogle ScholarPubMed
Gomathi-Devi, L. and Kavitha, R.: Review on modified N–TiO2 for green energy applications under UV/visible light: Selected results and reaction mechanisms. RSC Adv. 4, 28265 (2014).CrossRefGoogle Scholar
McManamon, C., O’Connell, J., Delaney, P., Rasappa, S., Holmes, J.D., and Morris, M.A.: A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity. J. Mol. Catal. A: Chem. 406, 51 (2015).10.1016/j.molcata.2015.05.002CrossRefGoogle Scholar
Yang, G., Wang, T., Yang, B., Yan, Z., Ding, S., and Xiao, T.: Enhanced visible-light activity of F–N co-doped TiO2 nanocrystals via nonmetal impurity, Ti3+ ions and oxygen vacancies. Appl. Surf. Sci. 287, 135 (2013).CrossRefGoogle Scholar
Wu, J-M. and Yin, J-X.: A facile solution-based approach to a photocatalytic active branched one-dimensional TiO2 array. RSC Adv. 5, 3465 (2015).10.1039/C4RA12896FCrossRefGoogle Scholar
Sysoev, V.I., Okotrub, A.V., Gusel’nikov, A.V., Smirnov, D.A., and Bulusheva, L.G.: In situ XPS observation of selective NOx adsorption on the oxygenated graphene films. Phys. Status Solidi B 255, 1700267 (2018).10.1002/pssb.201700267CrossRefGoogle Scholar
Bendova, M., Kolar, J., Marik, M., Lednicky, T., and Mozalev, A.: Influence of nitrogen species on the porous-alumina-assisted growth of TiO2 nanocolumn arrays. Electrochim. Acta 281, 796 (2018).10.1016/j.electacta.2018.05.197CrossRefGoogle Scholar
Fan, Y., Ma, C., Liu, B., Chen, H., Dong, L., and Yin, Y.: Nitrogen doped anatase TiO2 sheets with dominant (001) facets for enhancing visible-light photocatalytic activity. Mater. Sci. Semicond. Process. 27, 47 (2014).CrossRefGoogle Scholar
Cheng, X., Liu, H., Chen, Q., Li, J., and Wang, P.: Construction of N, S codoped TiO2 NCs decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim. Acta 103, 134 (2013).CrossRefGoogle Scholar
Chen, X-B. and Clemens, B.: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130, 5018 (2008).CrossRefGoogle ScholarPubMed
Zhang, Z. and Wang, P.: Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ. Sci. 5, 6506 (2012).CrossRefGoogle Scholar
Wei, D.: Formation and crystallization characteristics of anodic oxide film on pure titanium in potentiostatic mode. J. South China Univ. Technol. 40, 30 (2012).Google Scholar
Mazzarolo, A., Curioni, M., Vicenzo, A., Skeldon, P., and Thompson, G.E.: Anodic growth of titanium oxide: Electrochemical behaviour and morphological evolution. Electrochim. Acta 75, 288 (2012).CrossRefGoogle Scholar
Chen, X-B., Glans, P-A., Qiu, X., Dayal, S., Jennings, W.D., Smith, K.E., Burda, C., and Guo, J.: X-ray spectroscopic study of the electronic structure of visible-light responsive N-, C- and S-doped TiO2. J. Electron Spectrosc. Relat. Phenom. 162, 67 (2008).CrossRefGoogle Scholar
Manju, J. and Joseph-Jawhar, S.M.: Synthesis of magnesium-doped TiO2 photoelectrodes for dye-sensitized solar cell applications by solvothermal microwave irradiation method. J. Mater. Res. 33, 1534 (2018).CrossRefGoogle Scholar
Pan, Y., Shen, Y., Jin, Q., and Zhu, S.: Promotional effect of Ba additives on MnCeOx/TiO2 catalysts for NH3-SCR of NO at low temperature. J. Mater. Res. 33, 2414 (2018).CrossRefGoogle Scholar
Li, F., Han, T., Wang, H., Zheng, X., Wan, J., and Ni, B.: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).10.1557/jmr.2017.49CrossRefGoogle Scholar
Yan, L., Dong, S., Zhang, Y., Wang, L., Gang, Y., Fei, S., Deng, S., Zhang, X., and Zhang, S.: Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. J. Mater. Res. 32, 757 (2017).Google Scholar
Behpour, M. and Atouf, V.: Study of the photocatalytic activity of nanocrystalline S,N-codoped TiO2 thin films and powders under visible and sun light irradiation. Appl. Surf. Sci. 258, 6595 (2012).CrossRefGoogle Scholar
Bhirud, A.P., Sathaye, S.D., Waichal, R.P., Ambekar, J.D., Park, C.J., and Kale, B.B.: In situ preparation of N–TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light. Nanoscale 7, 5023 (2015).CrossRefGoogle ScholarPubMed
Li, J., Xu, X., Liu, X., Qin, W., and Pan, L.: Novel cake-like N-doped anatase/rutile mixed phase TiO2 derived from metal–organic frameworks for visible light photocatalysis. Ceram. Int. 43, 835 (2017).CrossRefGoogle Scholar
Liu, Y., Mu, K., Zhong, J., Chen, K., Zhang, Y., Yang, G., Wang, L., Deng, S., Shen, F., and Zhang, X.: Design of a solar-driven TiO2 nanofilm on Ti foil by self-structure modifications. RSC Adv. 5, 41437 (2015).CrossRefGoogle Scholar
Zhou, F., Song, H., Wang, H., Komarneni, S., and Yan, C.: N-doped TiO2/sepiolite nanocomposites with enhanced visible-light catalysis: Role of N precursors. Appl. Clay Sci. 166, 9 (2018).CrossRefGoogle Scholar
Zhang, W., Wang, C., Liu, X., and Li, J.: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).10.1557/jmr.2017.230CrossRefGoogle Scholar
Wu, F., Li, X., Liu, W., and Zhang, S.: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Clay Sci. 405, 60 (2017).Google Scholar
Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).CrossRefGoogle Scholar
Islam, M.M. and Basu, S.: Understanding photoelectrochemical degradation of methyl orange using TiO2/Ti mesh as photocathode under visible light. J. Environ. Chem. Eng. 4, 3554 (2016).CrossRefGoogle Scholar
Liu, D., Zhou, J., Wang, J., Tian, R., Li, X., Nie, E., Piao, X., and Sun, Z.: Enhanced visible light photoelectrocatalytic degradation of organic contaminants by F and Sn co-doped TiO2 photoelectrode. Chem. Eng. J. 344, 332 (2018).CrossRefGoogle Scholar
Chen, C., Ma, W., and Zhao, J.: ChemInform abstract: Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 39, 4206 (2010).CrossRefGoogle Scholar
Zhang, Y., Gu, D., Zhu, L., and Wang, B.: Highly ordered Fe3+/TiO2 nanotube arrays for efficient photocataltyic degradation of nitrobenzene. Appl. Surf. Sci. 420, 896 (2017).10.1016/j.apsusc.2017.05.213CrossRefGoogle Scholar
Ma, Q., Wang, H., Zhang, H., Cheng, X., Xie, M., and Cheng, Q.: Fabrication of MnO2/TiO2 nanotube arrays photoelectrode and its enhanced visible light photoelectrocatalytic performance and mechanism. Sep. Purif. Technol. 189, 193 (2017).CrossRefGoogle Scholar
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material

Download Li et al. supplementary material(File)
File 537.2 KB