Hostname: page-component-546b4f848f-gfk6d Total loading time: 0 Render date: 2023-06-03T10:58:54.968Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Formation of amorphous xenon nanoclusters and microstructure evolution in pulsed laser deposited Ti62.5Si37.5 thin films during Xe ion irradiation

Published online by Cambridge University Press:  14 January 2011

Sandip Bysakh*
Transmission Electron Microscopy Laboratory, Analytical Facility Division, Central Glass and Ceramic Research Institute, Calcutta 700 032, India
Kazutaka Mitsuishi
High Voltage Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305 0003, Japan
Minghui Song
High Voltage Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305 0003, Japan
Kazuo Furuya
High Voltage Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305 0003, Japan
Kamanio Chattopadhyay
Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, India
a)Address all correspondence to this author. e-mail:
Get access


As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe+ ion beam to an ion fluence of about 1016 ions-cm−2. Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti5Si3 intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Varichenko, V.S., Zaitsev, A.M., Kazutchits, N.M., Chelyadinskii, A.R., Penina, N.M., Martinovich, V.A., Latushko, Y.I., and Fahrner, W.R.: Defect production in silicon irradiated with 5.68 GeV Xe ions. Nucl. Instrum. Methods Phys. Res., Sect. B 107, 268 (1996).CrossRefGoogle Scholar
2.Jaouen, C., Rivière, J.P., and Delafond, J.: Temperature dependence for ion-induced amorphization of NiAl. Nucl. Instrum. Methods Phys. Res., Sect. B 5960, 406 (1991).CrossRefGoogle Scholar
3.Yu, N., Yasuda, K., Nastasi, M., Sickafus, K.E., and Tesmer, J.R.: In situ study of ion-beam induced lattice damage in calcium fluoride crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 127128, 591 (1997).CrossRefGoogle Scholar
4.Song, M., Mitsuishi, K., Takeguchi, M., Furuya, K., Tanabe, T., and Noda, T.: Structure of a phase induced with Xe-ion irradiation-implantation in gamma-TiAl. Philos. Mag. Lett. 80, 661 (2000).CrossRefGoogle Scholar
5.Oliver, J. and Veyssiere, P.: Radiation-induced helical dislocations in Co3Ti. Philos. Mag. Lett. 63, 141 (1991).CrossRefGoogle Scholar
6.Sickafus, K.E., Yu, N., and Nastasi, M.: Amorphization of MgAl2O4 spinel using 1.5 MeV Xe+ ions under cryogenic irradiation conditions. J. Nucl. Mater. 304, 237 (2002).CrossRefGoogle Scholar
7.Utsunomiya, S., Wang, L.M., Yudintsev, S., and Ewing, R.C.: Ion irradiation-induced amorphization and nano-crystal formation in garnets. J. Nucl. Mater. 303, 177 (2002).CrossRefGoogle Scholar
8.Templier, C., Gaboriaud, R.J., and Garem, H.: Precipitation of implanted xenon in aluminium. Mater. Sci. Eng. 69, 63 (1985).CrossRefGoogle Scholar
9.Allen, C.W., Birtcher, R.C., Donnelly, S.E., Song, M., Mitsuishi, K., Furuya, K., and Dahmen, U.: Determination of interfacial tensions for Xe nanoprecipitates in Al at 300 K. Philos. Mag. Lett. 83, 57 (2003).CrossRefGoogle Scholar
10.Allen, C.W., Birtcher, R.C., Donnelly, S.E., Furuya, K., Mitsuishi, K., and Song, M.: Melting and crystallization of Xe nanoprecipitates in Al under 1 MeV electron irradiation. J. Electron Microsc. (Tokyo) 51, S175 (2002).CrossRefGoogle Scholar
11.Bircher, R.C., Donnelly, S.E., Song, M., Furuya, K., Mitsuishi, K., and Allen, C.W.: Behavior of crystalline Xe nanoprecipitates during coalescence. Phys. Rev. Lett. 83, 1617 (1999).CrossRefGoogle Scholar
12.Mitsuishi, K., Song, M., Furuya, K., Birtcher, R.C., Allen, C.W., and Donnelly, S.E.: Observation of atomic processes in Xe nanocrystals embedded in Al under 1 MeV electron irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 148, 184 (1999).CrossRefGoogle Scholar
13.Wang, H., Araoujo, R., Swadener, J.G., Wang, Y.Q., Zhang, X., Fu, E.G., and Cagin, T.: Ion irradiation effects in nanocrystalline TiN coatings. Nucl. Instrum. Methods Phys. Res., Sect. B 261, 1162 (2007).CrossRefGoogle Scholar
14.Yamanaka, S., Ohara, H., Son, P., and Miyake, M.: Ion irradiation and thermal cycling tests of TiC coatings. J. Nucl. Mater. 128129, 937 (1984).CrossRefGoogle Scholar
15.Uglov, V.V., Rusalski, D.P., Zlotski, S.V., Sevriuk, A.V., Abadias, G., Kislitsin, S.B., Kadyrzhanov, K.K., Gorlachev, I.D., and Dub, S.N.: Stability of Ti-Zr-N coatings under Xe-ion irradiation. Surf. Coat. Technol. 204, 2095 (2010).CrossRefGoogle Scholar
16.Bysakh, S., Das, P.K., and Chattopadhyay, K.: Microstructure evolution and metastable phase formation in laser-ablation-deposited films of Ti5Si3 intermetallic compound. Philos. Mag. A 82, 1235 (2002).Google Scholar
17.Michell, D.R.G., Donnelly, S.E., Glanvill, S.R., Miller, P.R., and Rossouw, C.J.: A TEM and EDX study of cavities formed in tin by xenon ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 52, 160 (1992).CrossRefGoogle Scholar
18.Zontone, F., D’Acapito, F., Faraci, G., and Pennisi, A.R.: Evidence of a compressed fluid phase in Xe clusters. Eur. Phys. J. B 19, 501 (2001).CrossRefGoogle Scholar
19.Faraci, G., Pennisi, A.R., and Zontone, F.: Fine structure effects and phase transition of Xe nanocrystals in Si. Eur. Phys. J. B 51, 209 (2006).CrossRefGoogle Scholar
20.Donnelly, S.E., Birtcher, R.C., Allen, C.W., Morrison, I., Furuya, K., Song, M., Mitsuishi, K., and Dahmen, U.: Ordering in a fluid inert gas confined by flat surfaces. Science 296, 507 (2002).CrossRefGoogle Scholar
21.Desgranges, C. and Delhommelle, J.: Crystallization mechanisms for supercooled liquid Xe at high pressure and temperature: Hybrid Monte-Carlo molecular simulations. Phys. Rev. B 77, 054201 (2008).CrossRefGoogle Scholar
22.Belonoshko, A.B., Lebacq, O., Ahuja, R., and Johansson, B.: Molecular dynamics study of phase transitions in Xe. J. Chem. Phys. 117, 7233 (2002).CrossRefGoogle Scholar
23.Barberi, P.F., Landers, R., de Oliviera, M.H. Jr., Alvarez, F., and Marques, F.C.: Electronic structure of xenon implanted with low energy in amorphous silicon. J. Electron. Spectrosc. Relat. Phenom. 156158, 409 (2007).CrossRefGoogle Scholar
24.Quakernaat, J. and Visser, J.W.: Lattice dimensions of low-rate metalloid-stabilized Ti5Si3. High Temp. High Press. 6, 515 (1974).Google Scholar
25.Dinhut, J.F. and Denanot, M.F.: Solid xenon bubbles in Fe and Mo thin films. Mater. Lett. 17, 37 (1993).CrossRefGoogle Scholar