Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-727vs Total loading time: 0.415 Render date: 2022-12-03T10:01:12.167Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

High-resolution transmission electron microscopy (HRTEM) observation of dislocation structures in AlN thin films

Published online by Cambridge University Press:  31 January 2011

Yuki Tokumoto
Affiliation:
Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8651, Japan
Naoya Shibata
Affiliation:
Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan; and PRESTO, JST, Kawaguchi, Saitama 332-0012, Japan
Teruyasu Mizoguchi
Affiliation:
Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
Masakazu Sugiyama
Affiliation:
Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
Yukihiro Shimogaki
Affiliation:
Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
Jung-Seung Yang
Affiliation:
Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
Takahisa Yamamoto
Affiliation:
Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8651, Japan
Yuichi Ikuhara*
Affiliation:
Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan; and WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
*
a)Address all correspondence to this author. e-mail: ikuhara@sigma.t.u-tokyo.ac.jp
Get access

Abstract

The structure and configuration of threading dislocations (TDs) in AlN films grown on (0001) sapphire by metal–organic vapor phase epitaxy (MOVPE) were characterized by high-resolution transmission electron microscopy (HRTEM). It was found that the TDs formed in the films were mainly the perfect edge dislocations with the Burgers vector of b = ⅓〈11¯20〉. The majority of the edge TDs were not randomly formed but densely arranged in lines. The arrays of the edge TDs were mainly observed on the {11¯20} and {10¯10} planes. These two planes showed different configurations of TDs. TD arrays on both of these planes constituted low-angle boundaries. We suggest that these TDs are introduced to compensate for slight misorientations between the subgrains during the film growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lester, S.D., Ponce, F.A., Craford, M.G.Steigerwald, D.A.: High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl. Phys. Lett. 66, 1249 1995CrossRefGoogle Scholar
2Chien, F.R., Ning, X.J., Stemmer, S., Pirouz, P., Bremser, M.D.Davis, R.F.: Growth defects in GaN films on 6H–SiC substrates. Appl. Phys. Lett. 68, 2678 1996CrossRefGoogle Scholar
3Wu, X.H., Brown, L.M., Kapolnek, D., Keller, S., Keller, B., DenBaars, S.P.Speck, J.S.: Defect structure of metal–organic chemical vapor deposition-grown epitaxial (0001) GaN/Al2O3. J. Appl. Phys. 80, 3228 1996CrossRefGoogle Scholar
4Heying, B., Wu, X.H., Keller, S., Li, Y., Kapolnek, D., Keller, B.P., DenBaars, S.P.Speck, J.S.: Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett. 68, 643 1996CrossRefGoogle Scholar
5Qian, W., Skowronski, M., De Graef, M., Doverspike, K., Rowland, L.B.Gaskill, D.K.: Microstructural characterization of α-GaN films grown on sapphire by organometallic vapor phase epitaxy. Appl. Phys. Lett. 66, 1252 1995CrossRefGoogle Scholar
6Ning, X.J., Chien, F.R., Pirouz, P., Yang, J.W.Khan, M. Asif: Growth defects in GaN films on sapphire: The probable origin of threading dislocations. J. Mater. Res. 11, 580 1996CrossRefGoogle Scholar
7Fini, P., Wu, X.H., Tarsa, E.J., Golan, Y., Srikant, V., Keller, S., DenBaars, S.P.Speck, J.S.: The effect of growth environment on the morphological and extended defect evolution in GaN grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 37, 4460 1998CrossRefGoogle Scholar
8Wu, X.H., Fini, P., Tarsa, E.J., Heying, B., Keller, S., Mishra, U.K., DenBaars, S.P.Speck, J.S.: Dislocation generation in GaN heteroepitaxy. J. Cryst. Growth 189(190), 231 1998CrossRefGoogle Scholar
9Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., Romano, L.T.Sakai, S.: Direct evidence that dislocations are non-radiative recombination centers in GaN. Jpn. J. Appl. Phys. 37, L398 1998CrossRefGoogle Scholar
10Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S.Ikeda, M.: Characterization of threading dislocations in GaN epitaxial layers. Appl. Phys. Lett. 76, 3421 2000CrossRefGoogle Scholar
11Cherns, D., Henley, S.J.Ponce, F.A.: Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence. Appl. Phys. Lett. 78, 2691 2001CrossRefGoogle Scholar
12Weimann, N.G., Eastman, L.F., Doppalapudi, D., Ng, H.M.Moustakas, T.D.: Scattering of electrons at threading dislocations in GaN. J. Appl. Phys. 83, 3656 1998CrossRefGoogle Scholar
13Look, D.C.Sizelove, J.R.: Dislocation scattering in GaN. Phys. Rev. Lett. 82, 1237 1999CrossRefGoogle Scholar
14Waltereit, P., Lim, S.H., McLaurin, M.Speck, J.S.: Heteroepitaxial growth of GaN on 6H–SiC (0001) by plasma-assisted molecular-beam epitaxy. Phys. Status Solidi A 194, 524 20023.0.CO;2-N>CrossRefGoogle Scholar
15Davis, R.F., Einfeldt, S., Preble, E.A., Roskowski, A.M., Reitmeier, Z.J.Miraglia, P.Q.: Gallium nitride and related materials: Challenges in materials processing. Acta Mater. 51, 5961 2003CrossRefGoogle Scholar
16Kehagias, Th., Komninou, Ph., Nouet, G., Ruterana, P.Karakostas, Th.: Misfit relaxation of the AlN/Al2O3 (0001) interface. Phys. Rev. B 64, 195329 2001CrossRefGoogle Scholar
17Kwon, Y.B., Je, J.H., Ruterana, P.Nouet, G.: On the origin of a-type threading dislocations in GaN layers. J. Vac. Sci. Technol., A 23, 1588 2005CrossRefGoogle Scholar
18Potin, V., Nouet, G., Ruterana, P.Pond, R.C.: The atomic structure of threading dislocations from low-angle to high-angle grain boundaries in GaN/sapphire epitaxial layers. Phys. Status Solidi B 216, 645 19993.0.CO;2-C>CrossRefGoogle Scholar
19Koide, Y., Itoh, N., Itoh, K., Sawaki, N.Akasaki, I.: Effect of AlN buffer layer on AlGaN/α-Al2O3 heteroepitaxial growth by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 27, 1156 1988CrossRefGoogle Scholar
20Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K.Sawaki, N.: Effect of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN(0 < x ⩽ 0.4) films grown on sapphire substrate by MOVPE. J. Cryst. Growth 98, 209 1989CrossRefGoogle Scholar
21Amano, H., Iwaya, M., Hayashi, N., Kashima, T., Nitta, S., Wetzel, C.Akasaki, I.: Control of dislocations and stress in AlGaN on sapphire using a low temperature interlayer. Phys. Status Solidi B 216, 683 19993.0.CO;2-4>CrossRefGoogle Scholar
22Northrup, J.E.Neugebauer, J.: Theory of GaN (10¯10) and (11¯20) surfaces. Phys. Rev. B 53, R10477 1996CrossRefGoogle Scholar
23Xu, B., Lu, A.J., Pan, B.C.Yu, Q.X.: Atomic structures and mechanical properties of single-crystal GaN nanotubes. Phys. Rev. B 71, 125434 2005CrossRefGoogle Scholar
24Xin, Y., Pennycook, S.J., Browning, N.D., Nellist, P.D., Sivananthan, S., Omnès, F., Beaumont, B., Faurie, J.P.Gibart, P.: Direct observation of the core structures of threading dislocations in GaN. Appl. Phys. Lett. 72, 2680 1998CrossRefGoogle Scholar
25Potin, V., Ruterana, P., Nouet, G., Pond, R.C.Morkoç, H.: Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries. Phys. Rev. B 61, 5587 2000CrossRefGoogle Scholar
26Frank, F.C.: Capillary equilibria of dislocated crystals. Acta Crystallogr. 4, 497 1951CrossRefGoogle Scholar
27Qian, W., Rohrer, G.S., Skowronski, M., Doverspike, K., Rowland, L.B.Gaskill, D.K.: Open-core screw dislocations in GaN epilayers observed by scanning force microscopy and high-resolution transmission electron microscopy. Appl. Phys. Lett. 67, 2284 1995CrossRefGoogle Scholar
28Cherns, D., Young, W.T., Steeds, J.W., Ponce, F.A.Nakamura, S.: Observation of coreless dislocations in α-GaN. J. Cryst. Growth 178, 201 1997CrossRefGoogle Scholar
29Cherns, D., Wang, Y.Q., Liu, R.Ponce, F.A.: Observation of coreless edge and mixed dislocations in Mg-doped Al0.03Ga0.97N. Appl. Phys. Lett. 81, 4541 2002CrossRefGoogle Scholar
30Arslan, I.Browning, N.D.: Role of oxygen at screw dislocations in GaN. Phys. Rev. Lett. 91, 165501 2003CrossRefGoogle Scholar
31Cherns, D.Hawkridge, M.E.: Open core threading dislocations in GaN grown by hydride vapour phase epitaxy. Philos. Mag. 86, 4747 2006CrossRefGoogle Scholar
32Elsner, J., Jones, R., Haugk, M., Gutierrez, R., Frauenheim, Th., Heggie, M.I., Öberg, S.Briddon, P.R.: Effect of oxygen on the growth of (10¯10) GaN surfaces: The formation of nanopipes. Appl. Phys. Lett. 73, 3530 1998CrossRefGoogle Scholar
33Northrup, J.E.: Screw dislocations in GaN: The Ga-filled core model. Appl. Phys. Lett. 78, 2288 2001CrossRefGoogle Scholar
34Frank, F.C.: Crystal dislocations. Elementary concepts and definitions. Philos. Mag., 7th Ser. 42, 809 1951CrossRefGoogle Scholar
35Srikant, V., Speck, J.S.Clarke, D.R.: Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 82, 4286 1997CrossRefGoogle Scholar
36Metzger, T., Höpler, R., Born, E., Ambacher, O., Stutzmann, M., Stömmer, R., Schuster, M., Göbel, H., Christiansen, S., Albrecht, M.Strunk, H.P.: Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis x-ray diffractometry. Philos. Mag. A 77, 1013 1998CrossRefGoogle Scholar
37Chen, Z.T., Xu, K., Guo, L.P., Yang, Z.J., Su, Y.Y., Yang, X.L., Pan, Y.B., Shen, B., Zhang, H.Zhang, G.Y.: Effect of long anneals on the densities of threading dislocations in GaN films grown by metal–organic chemical vapor deposition. J. Cryst. Growth 294, 156 2006CrossRefGoogle Scholar
38Tokumoto, Y., Sato, Y., Yamamoto, T., Shibata, N.Ikuhara, Y.: Atomic structure of AlN/Al2O3 interfaces fabricated by pulsed laser deposition. J. Mater. Sci. 41, 2553 2006CrossRefGoogle Scholar
39Tokumoto, Y., Mizoguchi, T., Sato, Y., Shibata, N., Yamamoto, T.Ikuhara, Y.: Atomic structure and relaxation behavior at AlN (0001)/Al2O3 (0001) interface. J. Ceram. Soc. Japan 114, 1018 2006CrossRefGoogle Scholar
40Ikuhara, Y., Pirouz, P., Heuer, A.H., Yadavalli, S.Flynn, C.P.: Structure of V–Al2O3 interface grown by molecular beam epitaxy. Philos. Mag. A 70, 75 1994CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High-resolution transmission electron microscopy (HRTEM) observation of dislocation structures in AlN thin films
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

High-resolution transmission electron microscopy (HRTEM) observation of dislocation structures in AlN thin films
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

High-resolution transmission electron microscopy (HRTEM) observation of dislocation structures in AlN thin films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *