Hostname: page-component-6b989bf9dc-mbg9n Total loading time: 0 Render date: 2024-04-14T21:41:19.009Z Has data issue: false hasContentIssue false

High-resolution x-ray analysis of graphene grown on 4H–SiC (000$\bar 1$) at low pressures

Published online by Cambridge University Press:  21 November 2013

Michael A. Capano*
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; and Group 4 Development, LLC, West Lafayette, Indiana 47906
Benjamin M. Capano*
Group 4 Development, LLC, West Lafayette, Indiana 47906
Dallas T. Morisette
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; and Group 4 Development, LLC, West Lafayette, Indiana 47906
Alberto Salleo
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Sangwon Lee
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Michael F. Toney
Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025
a)Address all correspondence to this author. e-mail:
Get access


This article explores the growth of graphene under low-pressure Ar conditions. Carbon- and silicon-face 4H–SiC samples are subjected to epitaxial graphene growth at 1600 °C in vacuum, in 1 mbar argon, or in 10 mbar of argon. High-resolution x-ray scattering is used to characterize all graphene films. On the C-face, specular scans reveal a bimodal distribution of thicknesses that decrease with increasing Ar pressure. Thin and thick regions are approximately 15 and 46 monolayers in C-face graphene grown at high vacuum, 14 and 42 monolayers thick in graphene grown at 1 mbar, and 12 and 32 monolayers thick in graphene grown at 10 mbar. Azimuthal scans confirm in all cases that graphene layers are epitaxial and display expected crystallographic relationships with the underlying SiC substrate. In-plane azimuthal scans show the rotational disorder increases as pressure increases. Peaks in radial scans are asymmetric, suggesting the grain structure has a bimodal distribution of large and small domains. The sample displaying the lowest average Hall mobility (grown at 1 mbar) has the largest population of small crystallites (coherence length on the order of ∼30 nm). Variations in structure and mobility of C-face graphene are attributed to inadequate control of Si sublimation during growth.

Invited Papers
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Van Bommel, A.J., Crombeen, J.E., and Van Tooren, A.: LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463 (1975).Google Scholar
Muehlhoff, L., Choyke, W.J., Bozack, M.J., and Yates, J.T.: Comparative electron spectroscopic studies of surface segregation on SiC(0001) and SiC(0001). J. Appl. Phys. 60, 2842 (1986).Google Scholar
Forbeaux, I., Themlin, J-M., and Debever, J-M.: High-temperature graphitization of the 6H-SiC (000 $\bar 1$ ) face. Surf. Sci. 442, 9 (1999).Google Scholar
Tromp, R.M. and Hannon, J.B.: Thermodynamics and kinetics of graphene growth on SiC (0001). Phys. Rev. Lett. 102, 106104 (2009).Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).CrossRefGoogle ScholarPubMed
Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., and de Heer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 1991219916 (2004).Google Scholar
Drowart, J., De Maria, G., and Inghram, G.: Thermodynamic study of SiC utilizing a mass spectrometer. J. Chem. Phys. 29, 10151021 (1958).Google Scholar
Davis, S.G., Anthrop, D.F., and Searcy, A.W.: Vapor pressure of silicon and the dissociation pressure of silicon carbide. J. Chem. Phys. 34, 659 (1961).Google Scholar
Berger, C., Song, Z.M., Li, X.B., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., and de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial grapheme. Science 312, 11911196 (2006).Google Scholar
Sadowski, M.L., Martinez, G., Potemski, M., Berger, C., and de Heer, W.A.: Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 97, 266405 (2006).Google Scholar
Shen, T., Gu, J.J., Xu, M., Wu, Y.Q., Bolen, M.L., Capano, M.A., Engel, L.W., and Ye, P.D.: Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001). Appl. Phys. Lett. 95, 172105 (2009).Google Scholar
Wu, X., Hu, Y., Ruan, M., Madiomanana, N.K., Hankinson, J., Sprinkle, M., Berger, C., and de Heer, W.A.: Half integer quantum Hall effect in high mobility single layer epitaxial grapheme. Appl. Phys. Lett. 95, 223108 (2009).Google Scholar
Shen, T., Neal, A.T., Bolen, M.L., Gu, J.J., Engel, L.W., Capano, M.A., and Ye, P.D.: Quantum-Hall plateau-plateau transition in top-gated epitaxial graphene grown on SiC (0001). J. Appl. Phys. 111, 013716 (2012).Google Scholar
Forbeaux, I., Themlin, J.M., and Debever, J.M.: Heteroepitaxial graphite on 6H-SiC (0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 58, 1639616406 (1998).Google Scholar
Hannon, J.B. and Tromp, R.M.: Pit formation during graphene synthesis on SiC (0001): In-situ electron microscopy. Phys. Rev. B 77, 241404 (2008).CrossRefGoogle Scholar
Emtsev, K.V., Speck, F., Seyller, T., Riley, J.D., and Ley, L.: Interaction, growth, and ordering of epitaxial graphene on SiC {0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008).Google Scholar
de Heer, W.A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., and Conrad, E.: Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. U.S.A. 108, 1690016905 (2011).Google Scholar
Wu, Y.Q., Ye, P.D., Capano, M.A., Xuan, Y., Sui, Y., Qi, M., Cooper, J.A., Shen, T., Pandey, D., Prakash, G., and Reifenberger, R.: Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl. Phys. Lett. 92, 092102 (2008).Google Scholar
Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Rohrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., and Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203 (2009).Google Scholar
Bolen, M.L., Shen, T., Gu, J., Colby, R., Stach, E., Ye, P.D., and Capano, M.A.: Empirical study of Hall bars on few-layer graphene on c-face 4H-SiC. J. Electron. Mater. 39, 2696 (2010).Google Scholar
Tedesco, J.L., VanMil, B., Myers-Ward, R.L., Culbertson, J., Jernigan, G., Campbell, P., McCrate, J.M., Kitt, S.A., Eddy, C. Jr., and Gaskill, D.K.: Improvement of Morphology and Free Carrier Mobility through Argon-Assisted Growth of Epitaxial Graphene on Silicon Carbide. ECS Trans. 19, 137 (2009).CrossRefGoogle Scholar
Bolen, M.L., Harrison, S.E., Biedermann, L.B., and Capano, M.A.: Graphene formation mechanisms on 4H-SiC(0001). Phys. Rev. B 80, 115433 (2009).Google Scholar
Lee, S., Toney, M.F., Ko, W., Randel, J.C., Jung, H.J., Munakata, K., Lu, J., Geballe, T.H., Beasley, M.R., Sinclair, R., Manoharan, H.C., and Salleo, A.: Laser-synthesized epitaxial graphene. ACS Nano 4, 75247530 (2010).Google Scholar
Sutter, P.: Epitaxial graphene: How silicon leaves the scene. Nat. Mater. 8, 171172 (2009).Google Scholar
Virojanadara, C., Syväjarvi, M., Yakimova, R., Johansson, L.I., Zakharov, A.A., and Balasubramanian, T.: Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys. Rev. B 78, 245403 (2008).Google Scholar
Hass, J., Feng, R., Li, T., Li, X., Zong, Z., de Heer, W.A., First, P.N., Conrad, E.H., Jeffrey, C.A., and Berger, C.: Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 89, 143106 (2006).Google Scholar
de Heer, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., and Martinez, G.: Epitaxial graphene. Solid State Commun. 143, 92100 (2007).Google Scholar
Jernigan, G.G., VanMil, B.L., Tedesco, J.L., Tischler, J.G., Glaser, E.R., Davidson, A. III, Campbell, P.M., and Gaskill, D.K.: Comparison of epitaxial graphene on Si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production. Nano Lett. 9, 26052609 (2009).Google Scholar
Tedesco, J.L., VanMil, B.L., Myers-Ward, R.L., McCrate, J.M., Kitt, S.A., Campbell, P.M., Jernigan, G.G., Culbertson, J.C., Eddy, C.R., and Gaskill, D.K.: Hall effect mobility of epitaxial graphene grown on silicon carbide. Appl. Phys. Lett. 95, 122102 (2009).Google Scholar
Hass, J., Feng, R., Millán-Otoya, J.E., Li, X., Sprinkle, M., First, P.N., de Heer, W.A., Conrad, E.H., and Berger, C.: Structural properties of the multilayer graphene/4H-SiC(000 $\bar 1$ ) system as determined by surface x-ray diffraction. Phys. Rev. B 75, 214109 (2007).Google Scholar
Hass, J., Varchon, F., Millán-Otoya, J.E., Sprinkle, M., Sharma, N., de Heer, W.A., Berger, C., First, P.N., Magaud, L., and Conrad, E.H.: Why multilayer graphene on 4H-SiC(000 $\bar 1$ ) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008).Google Scholar
Luxmi, N.S., Guowei, H., Feenstra, R.M., and Fisher, P.J.: Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces. Phys. Rev. B 82, 235406 (2010).Google Scholar
Sprinkle, M., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Fèvre, P.L., Bertran, F., Tinkey, H., Clark, M.C., Soukiassian, P., Martinotti, D., Hass, J., and Conrad, E.H.: Multilayer epitaxial graphene grown on the SiC(000-1) surface; structure and electronic properties. J. Phys. D: Appl. Phys. 43, 374006 (2010).Google Scholar
Franklin, R.: The structure of graphitic carbons. Acta Crystall. 4, 253261 (1951).Google Scholar
Baskin, Y. and Meyer, L.: Lattice constants of graphite at low temperatures. Phys. Rev. 100, 544545 (1955).Google Scholar
Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622634 (1947).Google Scholar
Röhrl, J., Hundhausen, M., Emtsev, K.V., Seyller, T., Graupner, R., and Ley, L.: Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 92, 201918 (2008).Google Scholar
Ferralis, N., Maboudian, R., and Carraro, C.: Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). Phys. Rev. Lett. 101, 156801 (2008).Google Scholar
Robinson, J.A., Wetherington, M., Tedesco, J.L., Campbell, P.M., Weng, X., Stitt, J., Fanton, M.A., Frantz, E., Snyder, D., VanMil, B.L., Jernigan, G.G., Myers-Ward, R.L., Eddy, C.R. Jr., and Gaskill, D.K.: Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: A guide to achieving high mobility on the wafer scale. Nano Lett. 9, 28732876 (2009).Google Scholar
Choi, S-M., Jhi, S-H., and Son, Y-W.: Effects of strain on electronic properties of graphene. Phys. Rev. B 81, 081407 (2010).Google Scholar
Huang, M., Yan, H., Heinz, T.F., and Hone, J.: Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 10, 40744079 (2010).Google Scholar
Robinson, J.A., Puls, C.P., Staley, N.E., Stitt, J.P., and Fanton, M.A.: Raman topography and strain uniformity of large-area epitaxial graphene. Nano Lett. 9, 964968 (2009).Google Scholar
Tedesco, J.L., Jernigan, G.G., Culbertson, J.C., Hite, J.K., Yang, Y., Daniels, K.M., Myers-Ward, R.L., Eddy, C.R., Robinson, J.A., Trumbull, K.A., Wetherington, M.T., Campbell, P.M., and Gaskill, D.K.: Morphology characterization of argon-mediated epitaxial graphene on C-face SiC. Appl. Phys. Lett. 96, 222103 (2010).Google Scholar
Prakash, G., Capano, M.A., Bolen, M.L., Zemlyanov, D., and Reifenberger, R.G.: AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4H–SiC. Carbon 48, 23832393 (2010).Google Scholar
Colby, R., Bolen, M.L., Capano, M.A., and Stach, E.A.: Amorphous interface layer in thin graphite films grown on the carbon face of SiC. Appl. Phys. Lett. 99, 101904 (2011).Google Scholar
Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.H., Guinea, F., Castro Neto, A.H., and Lanzara, A.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770775 (2007).Google Scholar