Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-17T11:55:28.813Z Has data issue: false hasContentIssue false

Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement

Published online by Cambridge University Press:  31 January 2011

X.L. Fu
Affiliation:
Singapore–Massachusetts Institute of Technology (MIT) Alliance, National University of Singapore, Singapore 119260
Y. Li
Affiliation:
Singapore–Massachusetts Institute of Technology (MIT) Alliance, National University of Singapore, Singapore 119260; and Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576
C.A. Schuh*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
aAddress all correspondence to this author. e-mail: schuh@mit.edu
Get access

Abstract

We present a systematic study of homogeneous deformation in a La-based bulk metallic glass and two in situ composites based on the same glass. In contrast to prior investigations, which focused on relatively dilute composites, in this work the reinforcement volume percentages were more concentrated at 37% and 52%—near or above the percolation threshold (35–40%). Hot uniaxial compressive testing was conducted over a wide strain rate range from 10−2to 10−5s−1at a temperature near the glass transition. For such concentrated composites, the homogeneous deformation behavior appeared to be dominated by the properties of the reinforcement phase; in the present case the La reinforcements deformed by glide-controlled creep. Post-deformation analysis suggested that bulk metallic glass matrix composites were susceptible to microstructural evolution, which appeared to be enhanced by deformation, in contrast with a stress-free anneal. Consequently, unreinforced bulk metallic glass appeared to be more structurally stable than its composites during deformation near the glass transition.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Klement, W., Willens, R.H.Duwez, P.: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 1960Google Scholar
2Inoue, A., Nishiyama, N.Kimura, H.: Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20alloy cylinder of 72 mm in diameter. Mater. Trans., JIM 38, 179 1997Google Scholar
3Inoue, A., Zhang, T.Masumoto, T.: Al–La–Ni amorphous-alloys with a wide supercooled liquid region. Mater. Trans., JIM 30, 965 1989Google Scholar
4Peker, A.Johnson, W.L.: A highly processable metallic-glass—Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 1993Google Scholar
5Inoue, A., Kato, A., Zhang, T., Kim, S.G.Masumoto, T.: Mg–Cu–Y amorphous-alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans., JIM 32, 609 1991Google Scholar
6Ma, H., Ma, E.Xu, J.: A new Mg65Cu7.5Ni7.5Zn5Ag5Y10bulk metallic glass with strong glass-forming ability. J. Mater. Res. 18, 2288 2003Google Scholar
7Shen, J., Chen, Q.J., Sun, J.F., Fan, H.B.Wang, G.: Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 2005CrossRefGoogle Scholar
8Inoue, A., Zhang, T., Kurosaka, K.Zhang, W.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti–Be system. Mater. Trans, 42, 1800 2001Google Scholar
9Bruck, H.A., Christman, T., Rosakis, A.J.Johnson, W.L.: Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5bulk amorphous-alloys. Scripta Metall. Mater. 30, 429 1994Google Scholar
10Logan, J.Ashby, M.F.: Mechanical properties of two metallic glasses. Acta Metall. 22, 1054 1974Google Scholar
11Donovan, P.E.: Compressive deformation of amorphous Pd40Ni40P20. Mater. Sci. Eng. 98, 490 1988Google Scholar
12Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 1977Google Scholar
13Dandliker, R.B., Conner, R.D.Johnson, W.L.: Melt infiltration casting of bulk metallic-glass matrix composites. J. Mater. Res. 13, 2896 1998CrossRefGoogle Scholar
14Choi-Yim, H., Busch, R., Koster, U.Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6bulk metallic glass composites. Acta Mater. 47, 2455 1999CrossRefGoogle Scholar
15Kato, H., Hirano, T., Matsuo, A., Kawamura, Y.Inoue, A.: High strength and good ductility of Zr55Al10Ni5Cu30bulk glass containing ZRC particles. Scripta Mater. 43, 503 2000Google Scholar
16Hays, C.C., Kim, C.P.Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 2000Google Scholar
17Szuecs, F., Kim, C.P.Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 2001Google Scholar
18He, G., Loser, W., Eckert, J.Schultz, L.: Enhanced plasticity in a Ti-based bulk metallic glass-forming alloy by in situ formation of a composite microstructure. J. Mater. Res. 17, 3015 2002Google Scholar
19Choi-Yim, H., Conner, R.D., Szuecs, F.Johnson, W.L.: Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6bulk metallic glass composites. Acta Mater. 50, 2737 2002Google Scholar
20Das, J., Loser, W., Kuhn, U., Eckert, J., Roy, S.K.Schultz, L.: High-strength Zr–Nb–(Cu,Ni,Al) composites with enhanced plasticity. Appl. Phys. Lett. 82, 4690 2003Google Scholar
21Bae, D.H., Lee, M.H., Kim, D.H.Sordelet, D.J.: Plasticity in Ni59Zr20Ti16Si2Sn3metallic glass matrix composites containing brass fibers synthesized by warm extrusion of powders. Appl. Phys. Lett. 83, 2312 2003Google Scholar
22Lee, M.L., Li, Y.Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 2004Google Scholar
23Fu, X.L., Li, Y.Schuh, C.A.: Contributions to the homogeneous plastic flow of in situ metallic glass matrix composites. Appl. Phys. Lett. 87, 241904 2005CrossRefGoogle Scholar
24Ma, H., Xu, J.Ma, E.: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 2003Google Scholar
25Fu, H.M., Zhang, H.F., Wang, H., Zhang, Q.S.Hu, Z.Q.: Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in-situ TiC particles. Scripta Mater. 52, 669 2005Google Scholar
26Bian, Z., Kato, H., Qin, C.L., Zhang, W.Inoue, A.: Cu–Hf–Ti–Ag–Ta bulk metallic glass composites and their properties. Acta Mater. 53, 2037 2005CrossRefGoogle Scholar
27Zhang, Y., Xu, W., Tan, H.Li, Y.: Microstructure control and ductility improvement of La–Al–(Cu,Ni) composites by Bridgman solidification. Acta Mater. 53, 2607 2005Google Scholar
28Fu, X.L., Li, Y.Schuh, C.A.: Mechanical properties of metallic glass matrix composites: Effects of reinforcement character and connectivity. Scripta Mater. 56, 617 2007CrossRefGoogle Scholar
29Saotome, Y., Hatori, T., Zhang, T.Inoue, A.: Superplastic micro/nano-formability of La60Al20Ni10Co5Cu5amorphous alloy in supercooled liquid state. Mater. Sci. Eng., A—Struct. Mater. Prop. Microstruct. Process. 304, 716 2001CrossRefGoogle Scholar
30Chiang, C.L., Chu, J.P., Lo, C.T., Nieh, T.G., Wang, Z.X.Wang, W.H.: Homogeneous plastic deformation in a Cu-based bulk amorphous alloy. Intermetallics 12, 1057 2004Google Scholar
31Bae, D.H., Lim, H.K., Kim, S.H., Kim, D.H.Kim, W.T.: Mechanical behavior of a bulk Cu–Ti–Zr–Ni–Si–Sn metallic glass forming nano-crystal aggregate bands during deformation in the supercooled liquid region. Acta Mater. 50, 1749 2002Google Scholar
32Kawamura, Y., Shibata, T., Inoue, A.Masumoto, T.: Workability of the supercooled liquid in the Zr65Al10Ni10Cu15bulk metallic glass. Acta Mater. 46, 253 1998Google Scholar
33Kato, H., Kawamura, Y., Inoue, A.Chen, H.S.: Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20. Appl. Phys. Lett. 73, 3665 1998Google Scholar
34Lu, J., Ravichandran, G.Johnson, W.L.: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429 2003Google Scholar
35Bletry, M., Guyot, P., Blandin, J.J.Soubeyroux, J.L.: Free volume model: High-temperature deformation of a Zr-based bulk metallic glass. Acta Mater. 54, 1263 2006Google Scholar
36Reger-Leonhard, A., Heilmaier, M.Eckert, J.: Newtonian flow of Zr55Cu30Al10Ni5bulk metallic glassy alloys. Scripta Mater. 43, 459 2000Google Scholar
37Wang, Q., Pelletier, J.M., Blandin, J.J.Suery, M.: Mechanical properties over the glass transition of Zr41.2Ti13.8Cu12.5Ni10Be22.5bulk metallic glass. J. Non-Cryst. Solids 351, 2231 2005Google Scholar
38Shen, J., Wang, G., Sun, J.F., Stachurski, Z.H., Yan, C., Ye, L.Zhou, B.D.: Superplastic deformation behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5bulk metallic glass in the supercooled liquid region. Intermetallics 13, 79 2005Google Scholar
39Chu, J.P., Chiang, C.L., Mahalingam, T.Nieh, T.G.: Plastic flow and tensile ductility of a bulk amorphous Zr55Al10Cu30Ni5alloy at 700 K. Scripta Mater. 49, 435 2003Google Scholar
40Nieh, T.G., Wadsworth, J., Liu, C.T., Ohkubo, T.Hirotsu, Y.: Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region. Acta Mater. 49, 2887 2001Google Scholar
41de Hey, P., Sietsma, J.van den Beukel, A.: Structural disordering in amorphous Pd40Ni40P20induced by high temperature deformation. Acta Mater. 46, 5882 1998CrossRefGoogle Scholar
42Heggen, M., Spaepen, F.Feuerbacher, M.: Creation and annihilation of free volume during homogeneous flow of a metallic glass. J. Appl. Phys. 97, 033506 2005CrossRefGoogle Scholar
43Schuh, C.A., Lund, A.C.Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 2004CrossRefGoogle Scholar
44Nieh, T.G., Schuh, C., Wadsworth, J.Li, Y.: Strain rate-dependent deformation in bulk metallic glasses. Intermetallics 10, 1177 2002Google Scholar
45Bae, D.H., Park, J.M., Na, J.H., Kim, D.H., Kim, Y.C.Lee, J.K.: Deformation behavior of Ti–Zr–Ni–Cu–Be metallic glass and composite in the supercooled liquid region. J. Mater. Res. 19, 937 2004Google Scholar
46Bae, D.H., Lee, M.H., Yi, S., Kim, D.H.Sordelet, D.J.: Deformation behavior of a Ni59Zr20Ti16Si2Sn3metallic glass matrix composite reinforced by copper synthesized by warm extrusion of powders. J. Non-Cryst. Solids 337, 15 2004Google Scholar
47Fu, X.L., Li, Y.Schuh, C.A.: Temperature, strain rate and reinforcement volume fraction dependence of plastic deformation in metallic glass matrix composites. Acta Mater.(2007, in press) doi: 10.1016/j.actamat.2007.01.009Google Scholar
48Zhang, Y., Tan, H.Li, Y.: Bulk glass formation of 12 mm Rod in La-Cu-Ni-Al alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 375–377, 436 2004CrossRefGoogle Scholar
49Tan, H., Zhang, Y., Feng, Y.P.Li, Y.: Synthesis of a La-based bulk metallic glass matrix composite. Philos. Mag. Lett. 84, 53 2004CrossRefGoogle Scholar
50Kawamura, Y., Shibata, T., Inoue, A.Masumoto, T.: Stress overshoot in stress-strain curves of Zr65Al10Ni10Cu15metallic glass. Mater. Trans., JIM 40, 335 1999Google Scholar
51Argon, A.S.Kuo, H.Y.: Plastic flow in a disordered bubble raft (an analog of a metallic glass). Mater. Sci. Eng. 39, 101 1979Google Scholar
52Argon, A.S.Shi, L.T.: Development of visco-plastic deformation in metallic glasses. Acta Metall. 31, 499 1983Google Scholar
53Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 1979Google Scholar
54Kawamura, Y., Nakamura, T.Inoue, A.: Superplasticity in Pd40Ni40P20metallic glass. Scripta Mater. 39, 301 1998Google Scholar
55Schuh, C.A., Hufnagel, T.C.Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater.(2007, in press)Google Scholar
56Heilmaier, M.Eckert, J.: Elevated temperature deformation behavior of Zr-based bulk metallic glasses. Adv. Eng. Mater. 7, 833 2005Google Scholar
57Kawamura, Y., Shibata, T., Inoue, A.Masumoto, T.: Superplastic deformation of Zr65Al10Ni10Cu15metallic glass. Scripta Mater. 37, 431 1997Google Scholar
58Kawamura, Y., Nakamura, T., Inoue, A.Masumoto, T.: High-strain-rate superplasticity due to Newtonian viscous flow in La55Al25Ni20metallic glass. Mater. Trans., JIM 40, 794 1999Google Scholar
59Argon, A.S.Kuo, H.Y.: Free energy spectra for inelastic deformation of five metallic glass alloys. J. Non-Cryst. Solids 37, 266 1980Google Scholar
60Megusar, J., Argon, A.S.Grant, N.J.: Plastic flow and fracture in Pd80Si20near T g. Mater. Sci. Eng. 38, 63 1979Google Scholar
61Frost, H.J., Ashby, M.F.: Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics Pergamon Press NY 1982Google Scholar
62Gale, W.F., Totemeier, T.C.: Smithells Metals Reference Book Elsevier Butterworth-Heinemann Oxford, UK 2004Google Scholar
63Heilmaier, M.: Deformation behavior of Zr-based metallic glasses. J. Mater. Process. Technol. 117, 380 2001Google Scholar