Hostname: page-component-f7d5f74f5-9ndps Total loading time: 0 Render date: 2023-10-03T04:42:50.745Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

In situ and tomographic characterization of damage and dislocation processes in irradiated metallic alloys by transmission electron microscopy

Published online by Cambridge University Press:  20 February 2015

Josh Kacher*
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
Bai Cui
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; and Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588, USA
Ian M. Robertson
College of Engineering, University of Wisconsin, Madison, Wisconson 53706, USA
a)Address all correspondence to this author. e-mail:
Get access


Progress toward combining time-resolved experiments with periodic three-dimensional analysis of the evolved microstructural state has been made recently. In situ electron microscopy is used to observe in real time the development of irradiation defects and the influence of these defects on dislocation behavior. Three-dimensional characterization provides information on the true spatial distribution of defects and clarifies effects of the free surfaces in thin films. This quasi-four dimensional analysis approach has been applied to understand the formation of channels in irradiated alloys, the depth distribution of ion damage in an electron transparent foil, and the dislocation channel interactions with grain boundaries. The new insight obtained from these experiments is highlighted and contrasted with findings from simulations.

Invited Reviews
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Contributing Editor: Khalid Hattar



Odette, G.R. and Lucas, G.E.: Embrittlement of nuclear reactor pressure vessels. JOM 53(7), 18 (2001).CrossRefGoogle Scholar
Arsenlis, A., Wirth, B.D., and Rhee, M.: Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu. Philos. Mag. 84(34), 3617 (2004).CrossRefGoogle Scholar
Fukuya, K.: Current understanding of radiation-induced degradation in light water reactor structural materials. J. Nucl. Sci. Technol. 50(3–4), 213 (2013).CrossRefGoogle Scholar
Makin, M.J. and Minter, F.J.: The mechanical properties of irradiated niobium. Acta Metall. 7(6), 361 (1959).CrossRefGoogle Scholar
McReynolds, A.W., Augustyniak, W., McKeown, M., and Rosenblatt, D.B.: Neutron irradiation effects in Cu and Al at 80 K. Phys. Rev. 98(2), 418 (1955).CrossRefGoogle Scholar
Sharp, J.V.: Deformation of neutron-irradiated copper single crystals. Philos. Mag. 16, 77 (1967).CrossRefGoogle Scholar
Charit, I. and Murty, K.L.: Structural materials issues for the next generation fission reactors. JOM 62(9), 67 (2010).Google Scholar
Eyre, B.L. and Bartlett, A.F.: An electron microscope study of neutron irradiation damage in alpha-iron. Philos. Mag. 12, 261 (1965).CrossRefGoogle Scholar
Was, G.S. and Bruemmer, S.M.: Effects of irradiation on intergranular stress corrosion cracking. In Fundamentals of Radiation Damage: Proceedings of the International Summer School on the Fundamentals of Radiation Damage, Urbana, IL, August 1–12, 1993, Vol. 216, 1994; p. 326.Google Scholar
West, E.A., McMurtrey, M.D., Zhijie, J., and Was, G.S.: Role of localized deformation in irradiation-assisted stress corrosion cracking initiation. Metall. Mater. Trans. A 43(1), 136 (2012).CrossRefGoogle Scholar
Gilbert, E.R., Chin, B.A., and Duncan, D.R.: Effect of irradiation on failure mode during creep. Metall. Trans. A 18A(1), 79 (1987).CrossRefGoogle Scholar
Chant, I. and Murty, K.L.: Structural materials issues for the next generation fission reactors. JOM 62(9), 67 (2010).CrossRefGoogle Scholar
Kirk, M., Santos, C., Eason, E., Wright, J., and Odette, G.R.: Updated embrittlement trend curve for reactor pressure vessel steels. In Structural Mechanics in Reactor Technology, 2003.Google Scholar
Souidi, A., Hou, M., Becquart, C.S., Malerba, L., Domain, C., and Stoller, R.E.: On the correlation between primary damage and long-term nanostructural evolution in iron under irradiation. J. Nucl. Mater. 419(1–3), 122 (2011).CrossRefGoogle Scholar
Stoller, R.E., Odette, G.R., and Wirth, B.D.: Primary damage formation in bcc iron. J. Nucl. Mater. 251, 49 (1997).CrossRefGoogle Scholar
Kacher, J. and Robertson, I.M.: Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel. Acta Mater. 60(19), 6657 (2012).CrossRefGoogle Scholar
Kacher, J. and Robertson, I.M.: In situ and tomographic analysis of dislocation/grain boundary interactions in titanium. Philos. Mag. 94(8), 814 (2014).CrossRefGoogle Scholar
Kacher, J.P., Liu, G.S., and Robertson, I.M.: Visualization of grain boundary/dislocation interaction using tomographic reconstructions. Scr. Mater. 64, 677 (2011).CrossRefGoogle Scholar
Xu, D., Wirth, B.D., Li, M., and Kirk, M.A.: Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals. Acta Mater. 60(10), 4286 (2012).CrossRefGoogle Scholar
Bufford, D., Pratt, S.H., Boyle, T.J., and Hattar, K.: In situ TEM ion irradiation and implantation effects on Au nanoparticle morphologies. Chem. Commun. 50(57), 7593 (2014).CrossRefGoogle ScholarPubMed
Kacher, J., Liu, G.S., and Robertson, I.M.: In situ and tomographic observations of defect free channel formation in ion irradiated stainless steels. Micron 43(11), 1099 (2012).CrossRefGoogle ScholarPubMed
Barnard, J.S., Sharp, J., Tong, J.R., and Midgley, P.A.: Weak-beam dark-field electron tomography of dislocations in GaN. J. Phys.: Conf. Ser. 26, 247 (2006).Google Scholar
Barnard, J.S., Sharp, J., Tong, J.R., and Midgley, P.A.: Electron tomography of dislocations. Microsc. Microanal. 13, 150 (2007).CrossRefGoogle Scholar
Liu, G.S., House, S.D., Kacher, J., Tanaka, M., Higashida, K., and Robertson, I.M.: Electron tomography of dislocation structures. Mater. Charact. 87, 1 (2014).CrossRefGoogle Scholar
Briceno, M., Fenske, J., Dadfarnia, M., Sofronis, P., and Robertson, I.M.: Effects of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel. J. Nucl. Mater. 409, 18 (2011).CrossRefGoogle Scholar
Smallman, R.E. and Westmacott, K.H.: Structure of quenched and irradiated metals. J. Appl. Phys. 30(5), 603 (1959).CrossRefGoogle Scholar
Mazey, D.J., Barnes, R.S., and Howie, A.: On interstitial dislocation loops in aluminium bombarded with alpha-particles. Philos. Mag. 7(83), 1861 (1962).CrossRefGoogle Scholar
Jenkins, M.L.: Characterisation of radiation-damage microstructures by TEM. J. Nucl. Mater. 216, 124 (1994).CrossRefGoogle Scholar
Hattar, K., Bufford, D.C., and Buller, D.L.: Concurrent in situ ion irradiation transmission electron microscope. Nucl. Instrum. Methods Phys. Res., Sect. B 338, 56 (2014).CrossRefGoogle Scholar
Li, M., Kirk, M.A., Baldo, P.M., Xu, D., and Wirth, B.D.: Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling. Philos. Mag. 92(16), 2048 (2012).CrossRefGoogle Scholar
Chisholm, C., Hattar, K., and Minor, A.M.: In situ TEM concurrent and successive Au self-ion irradiation and He implantation. Mater. Trans. 55(3), 418 (2014).CrossRefGoogle Scholar
Dudarev, S.L., Arakawa, K., Yi, X., Yao, Z., Jenkins, M.L., Gilbert, M.R., and Derlet, P.M.: Spatial ordering of nano-dislocation loops in ion-irradiated materials. J. Nucl. Mater. 455, 16 (2014).CrossRefGoogle Scholar
Hernandez-Mayoral, M., Yao, Z., Jenkins, M.L., and Kirk, M.A.: Heavy-ion irradiations of Fe and Fe-Cr model alloys. Part 2: Damage evolution in thin-foils at higher doses. Philos. Mag. 88(21), 2881 (2008).CrossRefGoogle Scholar
Jenkins, M.L., Yao, Z., Hernandez-Mayoral, M., and Kirk, M.A.: Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys. J. Nucl. Mater. 389, 197 (2009).CrossRefGoogle Scholar
Yao, Z., Hernandez-Mayoral, M., Jenkins, M.L., and Kirk, M.A.: Heavy-ion irradiations of Fe and Fe-Cr model alloys. Part 1: Damage evolution in thin-foils at lower doses. Philos. Mag. 88(21), 2851 (2008).CrossRefGoogle Scholar
Jenkins, M.L. and Kirk, M.A.: Characterization of Radiation Damage by Transmission Electron Microscopy (Institute of Physics Pub., CRC Press, Boca Raton, FL, 2001).CrossRefGoogle Scholar
Ishino, S.: A review of in situ observation of defect production with energetic heavy ions. J. Nucl. Mater. 251, 225 (1997).CrossRefGoogle Scholar
Allen, C.W., Funk, L.L., and Ryan, E.A.: New instrumentation in Argonne's HVEM-Tandem Facility: Expanded capability for in situ ion beam studies. In Ion-Solid Interactions for Materials Modification and Processing, MRS Proc., 396, 1996; p. 641.Google Scholar
Allen, C.W.: In situ ion- and electron-irradiation effects studies in transmission electron microscopes. Ultramicroscopy 56(1–3), 200 (1994).CrossRefGoogle Scholar
Hinks, J.A.: A review of transmission electron microscopes with in situ ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 3652 (2009).CrossRefGoogle Scholar
Egerton, R.F., Li, P., and Malac, M.: Radiation damage in the TEM and SEM. Micron 35(6), 399 (2004).CrossRefGoogle ScholarPubMed
Kirk, M.A., Robertson, I.M., King, W.E., Ryan, E.A., and Philippides, A.: Hvem investigation of in-situ, self-ion damage in iron at 40 and K. MRS Proc. 41, 326347 (1985).Google Scholar
Gilbert, M.R., Yao, Z., Kirk, M.A., Jenkins, M.L., and Dudarev, S.L.: Vacancy defects in Fe: Comparison between simulation and experiment. J. Nucl. Mater. 386388, 36 (2009).CrossRefGoogle Scholar
Kenik, E.A. and Mitchell, T.E.: Orientation dependence of the threshold displacement energy in copper and vanadium. Philos. Mag. 32(4), 815 (1975).CrossRefGoogle Scholar
Hayashi, T., Fukmuto, K., and Matsui, H.: In situ observation of glide motions of SIA-type loops in vanadium and V–5Ti under HVEM irradiation. J. Nucl. Mater. 307311(Part 2), 993 (2002).CrossRefGoogle Scholar
Barashev, A.V., Osetsky, Y.N., and Bacon, D.J.: Mechanism of one-dimensional glide of self-interstitial atom clusters in α-iron. Philos. Mag. A 80(11), 2709 (2000).CrossRefGoogle Scholar
Arakawa, K., Ono, K., Isshiki, M., Mimura, K., Uchikoshi, M., and Mori, H.: Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science 318, 956 (2007).CrossRefGoogle ScholarPubMed
Eyre, B.L. and Bullough, R.: On the formation of interstitial loops in metals. Philos. Mag. 12, 31 (1965).CrossRefGoogle Scholar
Chen, J., Gao, N., Jung, P., and Sauvage, T.: A new mechanism of loop formation and transformation in bcc iron without dislocation reaction. J. Nucl. Mater. 441(1–3), 216 (2013).CrossRefGoogle Scholar
Marian, J., Wirth, B., and Perlado, J.: Mechanism of formation and growth of <100> interstitial loops in ferritic materials. Phys. Rev. Lett. 88(25), 255507 (2002).CrossRefGoogle ScholarPubMed
Xu, H., Stoller, R.E., Osetsky, Y.N., and Terentyev, D.: Solving the puzzle of <110> interstitial loop formation in bcc iron. Phys. Rev. Lett. 110, 265503 (2013).CrossRefGoogle ScholarPubMed
Aliaga, M.J., Prokhodtseva, A., Schaeublin, R., and Caturla, M.J.: Molecular dynamics simulations of irradiation of α-Fe thin films with energetic Fe ions under channeling conditions. J. Nucl. Mater. 452(1–3), 453 (2014).CrossRefGoogle Scholar
Stoller, R.E.: The effect of free surfaces on cascade damage production in iron. J. Nucl. Mater. 307311(2 Suppl.), 935 (2002).CrossRefGoogle Scholar
Stoller, R.E. and Guiriec, S.G.: Secondary factors influencing cascade damage formation. In Proceedings of the 11th Conference on Fusion Research, December 7, 2003–December 12, 2003, Vol. 329333; Elsevier, 2004; p. 1238.Google Scholar
Bai, X-M., Voter, A.F., Hoagland, R.G., Nastasi, M., and Uberuaga, B.P.: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).CrossRefGoogle ScholarPubMed
Singh, B.N. and Foreman, A.J.E.: Calculated grain size-dependent vacancy supersaturation and its effect on void formation. Philos. Mag. 29(4), 847 (1974).CrossRefGoogle Scholar
Chen, D., Wang, J., Chen, T., and Shao, L.: Defect annihilation at grain boundaries in alpha-Fe. Sci. Rep. 3, 14501454, (2013).CrossRefGoogle ScholarPubMed
Sun, C., Yu, K.Y., Lee, J.H., Liu, Y., Wang, H., Shao, L., Maloy, S.A., Hartwig, K.T., and Zhang, X.: Enhanced radiation tolerance of ultrafine grained Fe-Cr-Ni alloy. J. Nucl. Mater. 420(1–3), 235 (2012).CrossRefGoogle Scholar
Yu, K.Y., Liu, Y., Sun, C., Wang, H., Shao, L., Fu, E.G., and Zhang, X.: Radiation damage in helium ion irradiated nanocrystalline Fe. J. Nucl. Mater. 425(1–3), 140 (2012).CrossRefGoogle Scholar
El-Atwani, O., Hinks, J.A., Greaves, G., Gonderman, S., Qiu, T., Efe, M., and Allain, J.P.: In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments. Sci. Rep. 4, 47164722, (2014).CrossRefGoogle ScholarPubMed
Li, N., Hattar, K., and Misra, A.: In situ probing of the evolution of irradiation-induced defects in copper. J. Nucl. Mater. 439, 185 (2013).CrossRefGoogle Scholar
Edington, J.W.: Practical Electron Microscopy in Materials Science (N.V. Philips' Gloeilampenfabrieken, Eindhoven, Netherlands, 1976).Google Scholar
Fultz, B. and Howe, J.: Transmission Electron Microscopy and Diffractometry of Materials (Springer, Berlin, Germany, 2008).Google Scholar
Xu, D., Wirth, B.D., Li, M., and Kirk, M.A.: Recent work towards understanding defect evolution in thin molybdenum foils through in situ ion irradiation under TEM and coordinated cluster dynamics modeling. Curr. Opin. Solid State Mater. Sci. 16(3), 109 (2012).CrossRefGoogle Scholar
Wirth, B.D., Bulatov, V.V., and De La Rubia, T.D.: Atomistic simulation of dislocation-defect interactions in Cu. In Microstructural Processes in Irradiated Materials-2000, November 27, 2000–November 29, 2000, Vol. 650, MRS Proc., 2001; p. R3.27.1.Google Scholar
Victoria, M., Baluc, N., Bailat, C., Dai, Y., Luppo, M.I., Schaublin, R., and Singh, B.N.: The microstructure and associated tensile properties of irradiated FCC and BCC metals. In International Workshop on Basic Aspects of Differences in Irradiation Effects between FCC, BCC and HCP Metals and Alloys, 15–20 Oct. 1998, Vol. 276; Elsevier, 2000; p. 114.Google Scholar
Silcox, J. and Hirsch, P.B.: Direct observations of defects in quenched gold. Philos. Mag. 4(37), 72 (1959).CrossRefGoogle Scholar
Dlaz de la Rubia, T., Zhib, H.M., Khraishi, T.A., Wirth, B.D., Victoria, M., and Caturia, M.J.: Multiscale modelling of plastic flow localization in irradiated materials. Nature 406(6798), 871 (2000).CrossRefGoogle ScholarPubMed
Khraishi, T.A., Zbib, H.M., De La Rubia, T.D., and Victoria, M.: Localized deformation and hardening in irradiated metals: Three-dimensional discrete dislocation dynamics simulations. Metall. Mater. Trans. B 33B(2), 285 (2002).CrossRefGoogle Scholar
Farrell, K., Byun, T.S., and Hashimoto, N.: Deformation mode maps for tensile deformation of neutron-irradiated structural alloys. J. Nucl. Mater. 335, 471 (2004).CrossRefGoogle Scholar
Zinkle, S.J. and Matsukawa, Y.: Observation and analysis of defect cluster production and interactions with dislocations. In Proceedings of the 11th Conference on Fusion Research, December 7, 2003–December 12, 2003, Vol. 329333; Elsevier, 2004; p. 88.Google Scholar
Robach, J.S., Robertson, I.M., Wirth, B.D., and Arsenlis, A.: In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ion-irradiated copper. Philos. Mag. 83(8), 955 (2003).CrossRefGoogle Scholar
Schaublin, R., Yao, Z., Spatig, P., and Victoria, M.: Dislocation defect interaction in irradiated Cu. Mater. Sci. Eng., A. 400401(1–2 Suppl.), 251 (2005).CrossRefGoogle Scholar
Robertson, I.M., Robach, J.S., Lee, H.J., and Wirth, B.D.: Dynamic observations and atomistic simulations of dislocation-defect interactions in rapidly quenched copper and gold. Acta Mater. 54(6), 1679 (2006).Google Scholar
Wadhwa, A.S. and Dhaliwal, E.H.S.: A Textbook of Engineering Material and Metallurgy (University Science Press, Laxmi Publications, New Delhi, India, 2008).Google Scholar
Briceño, M., Kacher, J., and Robertson, I.M.: Dynamics of dislocation interactions with stacking-fault tetrahedra at high temperature. J. Nucl. Mater. 433(1–3), 390 (2013).CrossRefGoogle Scholar
Osetsky, Y.N., Matsukawa, Y., Stoller, R.E., and Zinkle, S.J.: On the features of dislocation-obstacle interaction in thin films: Large-scale atomistic simulation. Philos. Mag. Lett. 86(8), 511 (2006).CrossRefGoogle Scholar
Osetsky, Y.N., Stoller, R.E., and Matsukawa, Y.: Dislocation-stacking fault tetrahedron interaction: What can we learn from atomic-scale modelling. In Proceedings of the 11th Conference on Fusion Research, December 7, 2003–December 12, 2003, Vol. 329333, Elsevier; 2004; p. 1228.Google Scholar
Osetsky, Y.N., Stoller, R.E., Rodney, D., and Bacon, D.J.: Atomic-scale details of dislocation-stacking fault tetrahedra interaction. Mater. Sci. Eng., A. 400401(1–2 Suppl.), 370 (2005).CrossRefGoogle Scholar
Wirth, B.D., Bulatov, V.V., and De La Diaz Rubia, T.: Dislocation-stacking fault tetrahedron interactions in Cu. J. Eng. Mater. Technol. 124(3), 329 (2002).CrossRefGoogle Scholar
Ghoniem, N.M., Tong, S.H., Huang, J., Singh, B.N., and Wen, M.: Mechanisms of dislocation-defect interactions in irradiated metals investigated by computer simulations. J. Nucl. Mater. 307311(2 Suppl.), 843 (2002).CrossRefGoogle Scholar
Ghoniem, N.M., Tong, S.H., Singh, B.N., and Sun, L.Z.: On dislocation interaction with radiation-induced defect clusters and plastic flow localization in FCC metals. Philos. Mag. A 81(11), 2743 (2001).CrossRefGoogle Scholar
McMurtrey, M.D., Cui, B., Robertson, I.M., Farkas, D., and Was, G.S.: The role of dislocation channels in irradiation assisted stress corrosion cracking. Curr. Opin. Solid State Mater. Sci.(2014, submitted).Google Scholar
McMurtrey, M.D., Was, G.S., Patrick, L., and Farkas, D.: Relationship between localized strain and irradiation assisted stress corrosion cracking in an austenitic alloy. Mater. Sci. Eng., A. 528(10–11), 3730 (2011).CrossRefGoogle Scholar
Lee, T.C., Robertson, I.M., and Birnbaum, H.K.: TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos. Mag. A 62(1), 131 (1990).CrossRefGoogle Scholar
Bieler, T.R., Eisenlohr, P., Roters, F., Kumar, D., Mason, D.E., Crimp, M.A., and Raabe, D.: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int. J. Plast. 25, 1655 (2009).CrossRefGoogle Scholar
Lee, T.C., Robertson, I.M., and Birnbaum, H.K.: In situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. Metall. Trans. A 21A(9), 2437 (1990).CrossRefGoogle Scholar
Patriarca, L., Abuzaid, W., Sehitoglu, H., and Maier, H.J.: Slip transmission in bcc FeCr polycrystal. Mater. Sci. Eng., A. 588, 308 (2013).CrossRefGoogle Scholar
Sangid, M.D., Ezaz, T., Sehitoglu, H., and Robertson, I.M.: Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 59(1), 283 (2011).CrossRefGoogle Scholar
Cui, B., Kacher, J., McMurtrey, M., Was, G., and Robertson, I.M.: Influence of irradiation damage on slip transfer across grain boundaries. Acta Mater. 65, 150 (2014).CrossRefGoogle Scholar
Cui, B., McMurtrey, M.D., Was, G.S., and Robertson, I.M.: Micromechanistic origin of irradiation-assisted stress corrosion cracking. Philos. Mag. 94(36), 4197 (2014).CrossRefGoogle Scholar