Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-b9rrs Total loading time: 0.243 Render date: 2022-12-01T18:05:49.318Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Interface Characterization of AlN/TiN/MgO(001) Prepared by Molecular Beam Epitaxy

Published online by Cambridge University Press:  31 January 2011

X. L. Ma*
Affiliation:
Japan Fine Ceramics Center, 2–4-1 Mutsuno, Atsuta-ku, 456 Nagoya, Japan
N. Shibata
Affiliation:
Japan Fine Ceramics Center, 2–4-1 Mutsuno, Atsuta-ku, 456 Nagoya, Japan
Y. Ikuhara
Affiliation:
Department of Materials Science, The University of Tokyo, 113 Tokyo, Japan
*
a)Address all correspondence to this author. E-mail: ma@jfcc.or.jp
Get access

Abstract

The AlN/TiN/MgO(001) interfaces, prepared by molecular beam epitaxy, have been characterized by cross-sectional high-resolution electron microscopy (HREM). The thin TiN buffer layer, with the thickness of 40 nm, is epitaxially grown on the MgO(001) substrate. Owing to the same structure-type as well as the small mismatch of their lattice parameters, the growth is governed by the parallel orientation relationship of (001)TiN||(001)MgO, (010)TiN||(010)MgO, and (111)TiN||(111)MgO. Two kinds of processes of the hexagonal AlN epitaxial growth on the as-received TiN(001), differed by the (0001)AlN plane parallel to, and the (1012) plane approximately parallel to the MgO substrate surface, respectively, are identified, and within them, several cases are classified which are based on the consideration of crystallographic symmetry. Theoretical calculations based on the geometrical model that was recently proposed and applied to a number of epitaxial systems have been carried out to rationalize these observations.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yim, W. M., Stofko, E. J., Zanzucchi, P. J., Pankove, J. I., Etlenberg, M., and Gilbert, S. L., J. Appl. Phys. 44, 292 (1973).CrossRefGoogle Scholar
2.Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B10, 1237 (1992).CrossRefGoogle Scholar
3.Edgar, J. H., J. Mater. Res. 7, 235 (1992).CrossRefGoogle Scholar
4.Miyauchi, M., Ishikawa, Y., and Shibata, N., Jpn. J. Appl. Phys. 31, L1714 (1992).CrossRefGoogle Scholar
5.Vispute, R. D., Narayan, J., Wu, H., and Jagannadham, K., J. Appl. Phys. 77, 4724 (1995).CrossRefGoogle Scholar
6.Chaudhuri, J., Thokala, R., Edgar, J.H., and Sywe, B. S., J. Appl. Phys. 77, 6263 (1995).CrossRefGoogle Scholar
7.Meng, W.J., Heremans, J., and Cheng, Y.T., Appl. Phys. Lett. 59, 2097 (1991).CrossRefGoogle Scholar
8.Meng, W.J., Sell, J.A., Perry, T.A., Rehn, L.E., and Baldo, P.M., J. Appl. Phys. 75, 3446 (1994).CrossRefGoogle Scholar
9.Stevens, K.S., Ohtani, A., Kinniburgh, M., and Beresfors, R., Appl. Phys. Lett. 65, 321 (1994).CrossRefGoogle Scholar
10.Dovidenko, K., Oktyabrsky, S., Narayan, J., and Razeghi, M., J. Appl. Phys. 79, 2439 (1996).CrossRefGoogle Scholar
11.Calleja, E., Sánchez-Garcia, M.A., Monroy, E., Sánchez, F.J., Muñoz, E., Sanz-Hervás, A., Villar, C., and Aguilar, M., J. Appl. Phys. 82, 4681 (1997).CrossRefGoogle Scholar
12.Chu, T. L., Ing, D. W., and Norieka, A. J., Solid-State Electron. 10, 1023 (1967).CrossRefGoogle Scholar
13.Sitar, Z., Paisley, M. J., Yan, B., Davis, R. F., Ruan, J., and Choyke, J. W., Thin Solid Films 200, 311 (1991).CrossRefGoogle Scholar
14.Yoshida, S., Mitawa, S., Fujji, Y., Tanaka, S., Hayakawa, H., Gonda, S., and Itoh, A., J. Vac. Sci. Technol. 16, 990 (1979).CrossRefGoogle Scholar
15.Rowland, L.B., Kern, R. S., Tanaka, S., and Davis, R.F., Appl. Phys. Lett. 62, 3333 (1993).CrossRefGoogle Scholar
16.Tanaka, S., Kern, R. S., and Davis, R. F., Appl. Phys. Lett. 66, 37 (1995).CrossRefGoogle Scholar
17.Shuskus, A. J., Reeder, T. M., and Paradis, E. L., Appl. Phys. Lett. 24, 155 (1974).CrossRefGoogle Scholar
18.Sexler, A., Kung, P., Sun, C. J., Bigan, E., and Razeghi, M., Appl. Phys. Lett. 64, 339 (1994).CrossRefGoogle Scholar
19.Katsikini, M., Paloura, E.C., Cheng, T.S., and Foxon, C. T., J. Appl. Phys. 82, 1166 (1997).CrossRefGoogle Scholar
20.Ivanov, I., Hultman, L., Järandahl, K., Mårtensson, P., Sundgren, J-E., Hjörvarsson, B., and Greene, J. E., J. Appl. Phys. 78, 5721 (1995).CrossRefGoogle Scholar
21.Chubachi, Y., Sato, K., and Kojima, K., Thin Solid Films 122, 259 (1984).CrossRefGoogle Scholar
22.Ikuhara, Y. and Pirouz, P., Mater. Sci. Forum 207–209, 121 (1996).CrossRefGoogle Scholar
23.Nakayama, A., Setoyama, M., and Yoshioka, T., Vacuum 37, 929 (1994) (in Japanese).CrossRefGoogle Scholar
24.Petrov, I., Mojab, E., Powell, R.C., Greene, J.E., Hultman, L., and Sundgren, J-E., Appl. Phys. Lett. 60, 2491 (1992).CrossRefGoogle Scholar
25.Hultman, L., Benhenda, S., Radnoczi, G., Sundgren, J-E., Greene, J.E., and Petrov, I., Thin Solid Films 215, 152 (1992).CrossRefGoogle Scholar
26.Lin, W. T., Meng, L. C., Chen, G.J., and Liu, H. S., Appl. Phys. Lett. 66, 2066 (1995).CrossRefGoogle Scholar
27.Madan, A., Kim, I. W., Cheng, S. C., Yashar, P., Dravid, V. P., and Barnett, S. A., Phys. Rev. Lett. 78, 1743 (1997).CrossRefGoogle Scholar
28.Stemmer, S., Pirouz, P., Ikuhara, I., and Davis, R. F., Phys. Rev. Lett. 77, 1797 (1996).CrossRefGoogle Scholar
29.Ikuhara, Y., Pirouz, P., Heuer, A. H., Yadavalli, S., and Flynn, C. P., Philos. Mag. A 70, 75 (1994).CrossRefGoogle Scholar
30.Gutekunst, G., Mayer, J., and Rühle, M., Philos. Mag. A 75, 1329 (1997).CrossRefGoogle Scholar
31.Ikuhara, Y., Pirouz, P., Yadavalli, S., and Flynn, C. P., Philos. Mag. A 72, 179 (1995).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Interface Characterization of AlN/TiN/MgO(001) Prepared by Molecular Beam Epitaxy
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Interface Characterization of AlN/TiN/MgO(001) Prepared by Molecular Beam Epitaxy
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Interface Characterization of AlN/TiN/MgO(001) Prepared by Molecular Beam Epitaxy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *