Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-kfj7r Total loading time: 0.283 Render date: 2022-12-01T17:29:18.149Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Interface structure of AlN/TiN/MgO(001) prepared by molecular beam epitaxy

Published online by Cambridge University Press:  31 January 2011

X. L. Ma*
Affiliation:
Japan Fine Ceramics Center, 2–4–1 Mutsuno, Atsuta-ku, 456 Nagoya, Japan
Y. Sugawara
Affiliation:
Japan Fine Ceramics Center, 2–4–1 Mutsuno, Atsuta-ku, 456 Nagoya, Japan
N. Shibata
Affiliation:
Japan Fine Ceramics Center, 2–4–1 Mutsuno, Atsuta-ku, 456 Nagoya, Japan
Y. Ikuhara
Affiliation:
Department of Materials Science, University of Tokyo, 113 Tokyo, Japan
*
a)Address all correspondence to this author. Present address: Department of Materials Science, School of Engineering, University of Tokyo, 113 Tokyo, Japan. e-mail: ma@ceramic.mm.t.u-tokyo.ac.jp
Get access

Abstract

Thin AlN films were grown by molecular beam epitaxy on MgO(001) substrate with a thin TiN buffer layer. The as-prepared AlN/TiN/MgO(001) interfaces have been characterized by cross-sectional high-resolution electron microscopy (HREM). It is found that the thin TiN buffer layer is epitaxially grown on the MgO(001) substrate and hexagonal AlN epitaxially on the as-received TiN(001). Based on the growth orientation relationship and HREM images, atomistic structure models for the AlN/TiN interface are proposed, image simulated, and compared with experimental images.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yim, W.M., Stofko, E.J., Zanzucchi, P.J., Pankove, J.I., Etlenberg, M., and Gilbert, S.L., J. Appl. Phys. 44, 292 (1973).CrossRefGoogle Scholar
2.Edgar, J.H., J. Mater. Res. 7, 235 (1992).CrossRefGoogle Scholar
3.Strite, S. and Morkoc, H.J., J. Vac. Sci. Technol. B10, 1237 (1992).CrossRefGoogle Scholar
4.Meng, W.J., Heremans, J., and Cheng, Y.T., Appl. Phys. Lett. 59, 2097 (1991).CrossRefGoogle Scholar
5.Miyauchi, M., Ishikawa, Y., and Shibata, N., Jpn. J. Appl. Phys. 31, L1714 (1992).CrossRefGoogle Scholar
6.Meng, W.J., Sell, J.A., Perry, T.A., Rehn, L.E., and Baldo, P.M., J. Appl. Phys. 75, 3446 (1994).CrossRefGoogle Scholar
7.Stevens, K.S., Ohtani, A., Kinniburgh, M., and Beresford, R., Appl. Phys. Lett. 65, 321 (1994).CrossRefGoogle Scholar
8.Vispute, R.D., Narayan, J., Wu, H., and Jagannadham, K., J. Appl. Phys. 77, 4724 (1995).CrossRefGoogle Scholar
9.Chaudhuri, J., Thokala, R., Edgar, J.H., and Sywe, B.S., J. Appl. Phys. 77, 6263 (1995).CrossRefGoogle Scholar
10.Dovidenko, K., Oktyabrsky, S., Narayan, J., and Razeghi, M., J. Appl. Phys. 79, 2439 (1996).CrossRefGoogle Scholar
11.Calleja, E., Sánchez-Garcìa, M.A., Monroy, E., Sánchez, F.J., Muñoz, E., Sanz-Hervás, A., Villar, C., and Aguilar, M.J., J. Appl. Phys. 82, 4681 (1997).CrossRefGoogle Scholar
12.Chu, T.L., Ing, D.W., and Norieka, A.J., Solid-State Electron 10, 1023 (1967).CrossRefGoogle Scholar
13.Yoshida, S., Mitawa, S., Fujji, Y., Tanaka, S., Hayakawa, H., Gonda, S., and Itoh, A., J. Vac. Sci. Technol. 16, 990 (1979).CrossRefGoogle Scholar
14.Sitar, Z., Paisley, M.J., Yan, B., Davis, R.F., Ruan, J., and Choyke, J.W., Thin Solid Films 200, 311 (1991).CrossRefGoogle Scholar
15.Rowland, L.B., Kern, R.S., Tanaka, S., and Davis, R.F., Appl. Phys. Lett. 62, 3333 (1993).CrossRefGoogle Scholar
16.Tanaka, S., Kern, R.S., and Davis, R.F., Appl. Phys. Lett. 66, 37 (1995).CrossRefGoogle Scholar
17.Stemmer, S., Pirouz, P., Ikuhara, Y., and Davis, R.F., Phys. Rev. Lett. 77, 1797 (1996).CrossRefGoogle Scholar
18.Shuskus, A.J., Reeder, T.M., and Paradis, E.L., Appl. Phys. Lett. 24, 155 (1974).CrossRefGoogle Scholar
19.Sexler, A., Kung, P., Sun, C.J., Bigan, E., and Razeghi, M., Appl. Phys. Lett. 64, 339 (1994).CrossRefGoogle Scholar
20.Katsikini, M., Paloura, E.C., Cheng, T.S., and Foxon, C.T., J. Appl. Phys. 82, 1166 (1997).CrossRefGoogle Scholar
21.Ikuhara, Y. and Pirouz, P., Mater. Sci. Forum 207–209, 121 (1996).CrossRefGoogle Scholar
22.Ma, X.L., Shibata, N., and Ikuhara, Y., J. Mater. Res. 14, 1597 (1999).CrossRefGoogle Scholar
23.Kilaas, R., Proceedings of the 49th Annual Meeting of the Electron Microscopy Society of America, edited by Bailey, G.W. (San Francisco Press, San Francisco, CA, 1991), p. 528.Google Scholar
24.Lembreecht, W.R.L and Segall, B., in Metal-Ceramics Interfaces, edited by Rühle, M., Evans, A.G., Ashby, M.F., and Hirth, J.P. (Pergamon Press, New York, 1990), p. 29.CrossRefGoogle Scholar
25.Ivanov, I., Hultmn, L., Järandahl, K., Mårtensson, P., Sundgren, J-E., Hjörvarsson, B., and Greene, J.E., J. Appl. Phys. 78, 5721 (1995).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Interface structure of AlN/TiN/MgO(001) prepared by molecular beam epitaxy
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Interface structure of AlN/TiN/MgO(001) prepared by molecular beam epitaxy
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Interface structure of AlN/TiN/MgO(001) prepared by molecular beam epitaxy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *