Hostname: page-component-5d59c44645-7l5rh Total loading time: 0 Render date: 2024-02-25T11:50:43.964Z Has data issue: false hasContentIssue false

Low temperature amorphization and superconductivity in FeSe single crystals at high pressures

Published online by Cambridge University Press:  31 January 2011

Yogesh K. Vohra*
Affiliation:
Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294
Stanislav Sinogeiken
Affiliation:
High Pressure Collaborative Access Team (HPCAT), Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
Phillip M. Wu
Affiliation:
Department of Physics, Duke University, Durham, North Carolina 27708
Kuo W. Yeh
Affiliation:
Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
Samuel T. Weir
Affiliation:
L-041, Lawrence Livermore National Laboratory, Livermore, California 94550
*
a)Address all correspondence to this author. e-mail: ykvohra@uab.edu
Get access

Abstract

In this study, we report low temperature x-ray diffraction studies combined with electrical resistance measurements on single crystals of iron-based layered superconductor FeSe to a temperature of 10 K and a pressure of 44 GPa. The low temperature high pressure x-ray diffraction studies were performed using a synchrotron source and superconductivity at high pressure was studied using designer diamond anvils. At ambient temperature, the FeSe sample shows a phase transformation from a PbO-type tetragonal phase to a NiAs-type hexagonal phase at 10 ± 2 GPa. On cooling, a structural distortion from a PbO-type tetragonal phase to an orthorhombic Cmma phase is observed below 100 K. At a low temperature of 10 K, compression of the orthorhombic Cmma phase results in a gradual transformation to an amorphous phase above 15 GPa. The transformation to the amorphous phase is completed by 40 GPa at 10 K. A loss of superconductivity is observed in the amorphous phase and a dramatic change in the temperature behavior of electrical resistance indicates formation of a semiconducting state at high pressures and low temperatures. The formation of the amorphous phase is attributed to a kinetic hindrance to the growth of a hexagonal NiAs phase under high pressures and low temperatures.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hsu, F-C., Luo, J-Y., Yeh, K-W., Chen, T-K., Huang, T-W., Wu, P.M., Lee, Y-C., Huang, Y-L., Chu, Y-Y., Yan, D-C., Wu, M-K.Superconductivity in the PbO-type structure α-FeSe. Proc. Nat. Acad. Sci. U.S.A. 105, 14262 (2008)Google Scholar
2.Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., Takano, Y.Superconductivity at 27 K in tetragonal FeSe under high pressure. Appl. Phys. Lett. 93, 152505 (2008)Google Scholar
3.Yeh, K.W., Hsu, H.C., Huang, T.W., Wu, P.M., Huang, Y.L., Chen, T.K., Luo, J.Y.Se and Te doping study of the FeSe superconductors. J. Phys. Soc. Jpn. 77, 19 (2008)Google Scholar
4.Yeh, K-W., Huang, T-W., Huang, Y-L., Chen, T-K., Hsu, F-C., Wu, P.M., Lee, Y-C., Chu, Y-Y., Chen, C-L., Luo, J-Y., Yan, D-C., Wu, M-K.Tellurium substitution effect on superconductivity of the α-phase iron selenide. Eur. Phys. Lett. 84, 37002 (2008)Google Scholar
5.Tsoi, G., Stemshorn, A., Vohra, K.Y., Wu, P.M., Hsu, F.C., Huang, Y.L., Wu, M.K., Yeh, K.W., Weir, S.T.High pressure superconductivity in iron-based layered compounds studied using designer diamonds. J. Phys. Condens. Matter 21, 232201 (2009)Google Scholar
6.Andrew, K., Stemshorn, A., Vohra, Y.K., Wu, P.M., Hsu, F.C., Huang, Y.L., Wu, M.K., Yeh, K.W.Pressure-induced reversible amorphization in superconducting compound FeSe0.5Te0.5. High Pressure Res. 29, 267 (2009)Google Scholar
7.Arora, A.K. Pressure-induced amorphization, in High Pressure Phenomenon, Proceedings of the International School of Physics - Enrico Fermi, Course XXLVII edited by R.J. Hemley G.L. Chiarotti M. Bernasconi and L. Ulivi (IOS Press, Amsterdam, The Netherlands 2002)545Google Scholar
8.Wu, M.K., Hsu, F.C., Yeh, K.W., Huang, T.W., Luo, J.Y., Wang, M.J., Chang, H.H., Chen, T.K., Rao, S.M., Mok, B.H., Chen, C.L., Huang, Y.L., Ke, C.T., Wu, P.M., Chang, A.M., Wu, C.T., Perng, T.P.The development of the superconducting PbO-type beta-FeSe and related compounds. Physica C 469, 340 (2009)Google Scholar
9.Li, S., de la Cruz, C., Huang, Q., Chen, Y., Lynn, J.W., Hu, J., Huang, Y-L., Hsu, F-C., Yeh, K-W., Wu, M-K., Dai, P.First-order magnetic and structural phase transitions in Fe1+ySexTe1−x. Phys. Rev. B 79, 054503 (2009)Google Scholar
10.Weir, S.T., Akella, J., Ruddle, C.A., Vohra, Y.K., Catledge, S.A.Epitaxial diamond encapsulation of metal microprobes for high pressure experiments. Appl. Phys. Lett. 77, 3400 (2000)Google Scholar
11.Birch, F.Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947)Google Scholar
12.Velisavljevic, N., Vohra, Y.K.Distortion of alpha-uranium structure in praseodymium metal to 311 GPa. High Pressure Res. 24, 295 (2004)Google Scholar
13.Wang, X-L., Gao, X., Ma, G-C., Yan, J., Zhang, W-Q., Li, J-M., Chin, J.Ultrahigh-pressure equation of state for copper at 0 K. Phys. Lett. 25, 3350 (2008)Google Scholar
14.Kroeger, F.R.Absolute linear thermal-expansion measurements on copper and aluminum from 5 to 320 K. J. Appl. Phys. 48, 853 (1977)Google Scholar
15.Braithwaite, D., Salce, B., Lapertot, G., Bourdarot, F., Martin, C., Aoki, D., Hanfland, M.Superconducting and normal phases of FeSe single crystals at high pressure. J. Phys. Condens. Matter 21, 232202 (2009)Google Scholar
16.Margadonna, S., Takabayashi, Y., McDonald, M.T., Kasperkiewicz, K., Mizuguchi, Y., Takano, Y., Fitch, A.N., Suard, E., Prassides, K.Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe. Chem. Commun. (Camb.) 5607 (2008)Google Scholar
17.Garbarino, G., Sow, A., Lejay, P., Sulpice, A., Toulemonde, P., Mezouar, M., Nunez-Regueiro, M.High temperature superconductivity (T c onset at 34 K) in the high pressure orthorhombic phase of FeSe. Europhys. Lett. 86, 27001 (2009)Google Scholar
18.Medvedev, S., McQueen, T.M., Troyan, I.A., Palasyuk, T., Eremets, M.I., Cava, R.J., Naghavi, S., Casper, F., Ksenofontov, V., Wortmann, G., Felser, C.Electronic and magnetic phase diagram of |[beta]|-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat. Mater. 8, 630 (2009)Google Scholar
19.Rotter, M., Tegel, M., Johrendt, D., Schellenberg, I., Hermes, W., Pottgen, R.Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2. Phys. Rev. B 78, 020503 (2008)Google Scholar