Hostname: page-component-797576ffbb-5676f Total loading time: 0 Render date: 2023-12-05T01:24:03.157Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Nitrogen-doped titanium oxide microrods decorated with titanium oxide nanosheets for visible light photocatalysis

Published online by Cambridge University Press:  31 January 2011

Eun Sun Kim
Eco-friendly Catalyst and Energy Laboratory (NRL), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Hyojadong, Pohang 790-784, Korea
Hyun Gyu Kim
Busan Center, Korea Basic Science Institute (KBSI), Busan 609-735, Korea
Jae Sung Lee*
Eco-friendly Catalyst and Energy Laboratory (NRL), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Hyojadong, Pohang 790-784, Korea
a)Address all correspondence to this author. e-mail:
Get access


Nitrogen-doped titania with a unique two-level hierarchical structure and visible light photocatalytic activity is reported. Thus, nitrogen-doped titanium oxide microrods decorated with N-doped titanium oxide nanosheets were synthesized by a hydrothermal reaction in NH4OH and postcalcination. During the calcination, the in situ incorporation of nitrogen atoms of ammonium ion into titania lattice was accompanied by the structural evolution from titanate to anatase titania. The morphological and structural evolution was monitored by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Raman, Fourier transform infrared (FTIR), x-ray absorption near edge structure (XANES), x-ray photoelectron spectroscopy (XPS), and adsorption isotherms. The N-doping brought visible light absorption, and the material exhibited high photocatalytic activity in the decomposition of Orange II under visible light irradiation (λ ≥ 400 nm), especially when it was loaded with 1 wt% Pt as a cocatalyst.

Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Chen, C.C., Herhold, A.B., Johnson, C.S., Alivisatos, A.P.Size dependence of structural metastability in semiconductor nanocrystals. Science 276, 398 (1997)Google Scholar
2.Mann, S., Ozin, G.A.Synthesis of inorganic materials with complex form. Nature 382, 313 (1996)Google Scholar
3.Tokudome, H., Miyauchi, M.Electrochromism of titanate-based nanotubes. Angew. Chem. Int. Ed. 44, 1974 (2005)Google Scholar
4.Alivisatos, A.P.Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226 (1996)Google Scholar
5.Riss, A., Berger, T., Grothe, H., Bernardi, J., Diwald, O., Knözinger, E.Chemical control of photoexcited states in titanate nanostructures. Nano Lett. 7, 313 (2007)Google Scholar
6.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K.Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998)Google Scholar
7.Sun, X., Chen, X., Li, Y.Large-scale synthesis of sodium and potassium titanate nanobelts. Inorg. Chem. 41, 4996 (2002)Google Scholar
8.Chen, Q., Zhou, W., Du, G., Peng, L-M.Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 14, 1208 (2002)Google Scholar
9.Horváth, E., Kukovecz, A., Kónya, Z., Kiricsi, I.Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave. Chem. Mater. 19, 927 (2007)Google Scholar
10.Ma, R., Fukuda, K., Sasaki, T., Osada, M., Bando, Y.Structural features of titanate nanotubes/nanobelts revealed by Raman, x-ray absorption fine structure and electron diffraction characterizations. J. Phys. Chem. B 109, 6210 (2005)Google Scholar
11.Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y., Peng, L-M.Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702 (2001)Google Scholar
12.Kim, J.C., Choi, J., Lee, Y.B., Hong, J.H., Lee, J.I., Yang, J.W., Lee, W.I., Hur, N.H.Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem. Commun. (Camb.) 5024 (2006)Google Scholar
13.Torrente-Murciano, L., Lapkin, A.A., Bavykin, D.V., Walsh, F.C., Wilson, K.Highly selective Pd/titanate nanotube catalysts for the double-bond migration reaction. J. Catal. 245, 272 (2007)Google Scholar
14.Lim, S.H., Luo, J., Zhong, Z., Ji, W., Lin, J.Room-temperature hydrogen uptake by TiO2 nanotubes. Inorg. Chem. 44, 4124 (2005)Google Scholar
15.Wei, M., Qi, Z-m., Ichihara, M., Honma, I., Zhou, H.Ultralong single-crystal TiO2–B nanowires: Synthesis and electrochemical measurements. Chem. Phys. Lett. 424, 316 (2006)Google Scholar
16.Lan, Y., Gao, X.P., Zhu, H.Y., Zheng, Z.F., Yan, T.Y., Wu, F., Ringer, S.P., Song, D.Y.Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 15, 1310 (2005)Google Scholar
17.Qamar, M., Yoon, C.R., Oh, H.J., Kim, D.H., Jho, J.H., Lee, K.S., Lee, W.J., Lee, H.G., Kim, S.J.Effect of post treatments on the structure and thermal stability of titanate nanotubes. Nanotechnology 17, 5922 (2006)Google Scholar
18.Morgado, E. Jr., Abreu, M.A.S., Moure, G.T., Marinkovic, B.A., Jardim, P.M., Araujo, A.S.Characterization of nanostructured titanates obtained by alkali treatment of TiO2-anatases with distinct crystal sizes. Chem. Mater. 19, 665 (2007)Google Scholar
19.Zhu, H.Y., Lan, Y., Gao, X.P., Ringer, S.P., Zheng, Z.F., Song, D.Y., Zhao, J.C.Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J. Am. Chem. Soc. 127, 6730 (2005)Google Scholar
20.Poudel, B., Wang, W.Z., Dames, C., Huang, J.Y., Kunwar, S., Wang, D.Z., Banerjee, D., Chen, G., Ren, Z.F.Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology 16, 1935 (2005)Google Scholar
21.Zhang, S., Peng, L-M., Chen, Q., Du, G.H., Dawson, G., Zhou, W.Z.Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett. 91, 256103 (2003)Google Scholar
22.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)Google Scholar
23.Lee, J.S.Photocatalytic water splitting under visible light with particulate semiconductor catalysts. Catal. Surv. Asia 9, 217 (2006)Google Scholar
24.Rhee, C.H., Lee, J.S., Chung, S.H.Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route. J. Mater. Res. 20, 3011 (2005)Google Scholar
25.Rhee, C.H., Bae, S.W., Lee, J.S.Template-free hydrothermal synthesis of high surface area nitrogen-doped titania photocatalyst active under visible light. Chem. Lett. 34, 660 (2005)Google Scholar
26.Jang, J.S., Kim, H.G., Ji, S.M., Bae, S.W., Jung, J.H., Shon, B.H., Lee, J.S.Formation of crystalline TiO2−xNx and its photocatalytic activity. J. Solid State Chem. 179, 1067 (2006)Google Scholar
27.Kruk, M., Jaroniec, M.Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267 (1997)Google Scholar
28.Ankudinov, A.L., Bouldin, C.E., Rehr, J.J., Sims, J., Hung, H.Parallel calculation of electron multiple scattering using Lanczos algorithms. Phys. Rev. B 65, 104107 (2002)Google Scholar
29.Newville, M.IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322 (2001)Google Scholar
30.Choi, S.H., Lee, J.S.XAFS characterization of Pt–Mo bimetallic catalysts for CO hydrogenation. J. Catal. 167, 364 (1997)Google Scholar
31.Park, E.D., Choi, S.H., Lee, J.S.Active states of Pd and Cu in carbon-supported wacker-type catalysts for low-temperature CO oxidation. J. Phys. Chem. B 104, 5586 (2000)Google Scholar
32.Sayer, D.E., Bunker, B.A.X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES edited by D.C. Koningsberger and R. Prins (Wiley, New York 1988)211Google Scholar
33.Kim, W.B., Choi, S.H., Lee, J.S.Quantitative analysis of Ti–O–Si and Ti–O–Ti bonds in Ti–Si binary oxides by the linear combination of XANES. J. Phys. Chem. B 104, 8670 (2000)Google Scholar
34.Lee, J.S., Kim, W.B., Choi, S.H.Linear combination of XANES for quantitative analysis of Ti–Si binary oxides. J. Synchrotron Radiat. 8, 163 (2001)Google Scholar
35.Fukuda, K., Nakai, I., Oishi, C., Nomura, M., Harada, M., Yasuo, Y., Sasaki, T.Nanoarchitecture of semiconductor titania nanosheets revealed by polarization-dependent total reflection fluorescence x-ray absorption fine structure. J. Phys. Chem. B 108, 13088 (2004)Google Scholar
36.Choi, H.C., Ahn, H-J., Jung, Y.M., Lee, M.K., Shin, H.J., Kim, S.B., Sung, Y-E.Characterization of the structures of size-selected TiO2 nanoparticles using x-ray absorption spectroscopy. Appl. Spectrosc. 58, 598 (2004)Google Scholar
37.Sing, K.S.W., Evertt, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603 (1985)Google Scholar
38.Saha, N.C., Tomkins, H.G.Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 72, 3072 (1992)Google Scholar
39.Gole, J.L., Stout, J.D., Burda, C., Lou, Y., Chen, X.Highly efficient formation of visible light tunable TiO2−xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 108, 1230 (2004)Google Scholar
40.György, E., Pérez del Pino, A.A., Serra, P., Morenza, J.L.Surface nitridation of titanium by pulsed Nd:YAG laser irradiation. Appl. Surf. Sci. 186, 130 (2002)Google Scholar