Hostname: page-component-594f858ff7-7tp2g Total loading time: 0 Render date: 2023-06-09T14:23:37.734Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Rechargeable Mg–Li hybrid batteries: status and challenges

Published online by Cambridge University Press:  23 September 2016

Yingwen Cheng
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Hee Jung Chang
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Hui Dong
Department of Electrical and Computer Engineering and Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
Daiwon Choi
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Vincent L. Sprenkle
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Jun Liu
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Yan Yao*
Department of Electrical and Computer Engineering and Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
Guosheng Li*
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
b) e-mail:
a) Address all correspondence to these authors. e-mail:
Get access


A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a Li+ intercalation cathode, and a dual-salt electrolyte with both Mg2+ and Li+ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction.

Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Armand, M. and Tarascon, J.M.: Building better batteries. Nature 451(7179), 652 (2008).CrossRefGoogle Scholar
Dunn, B., Kamath, H., and Tarascon, J.M.: Electrical energy storage for the grid: A battery of choices. Science 334(6058), 928 (2011).CrossRefGoogle Scholar
Whittingham, M.S.: Materials challenges facing electrical energy storage. MRS Bull. 33(4), 411 (2008).CrossRefGoogle Scholar
Yang, Z.G., Zhang, J.L., Kintner-Meyer, M.C.W., Lu, X.C., Choi, D.W., Lemmon, J.P., and Liu, J.: Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577 (2011).CrossRefGoogle ScholarPubMed
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496 (2000).Google ScholarPubMed
Etacheri, V., Marom, R., Elazari, R., Salitra, G., and Aurbach, D.: Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 4(9), 3243 (2011).CrossRefGoogle Scholar
Goodenough, J.B.: Rechargeable batteries: Challenges old and new. J. Solid State Electrochem. 16(6), 2019 (2012).CrossRefGoogle Scholar
Liu, J.: Addressing the grand challenges in energy storage. Adv. Funct. Mater. 23(8), 924 (2013).CrossRefGoogle Scholar
Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., and Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537 (2011).CrossRefGoogle Scholar
Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P-L., Tolbert, S.H., Abruña, H.D., Simon, P., and Dunn, B.: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518 (2013).CrossRefGoogle ScholarPubMed
Ghidiu, M., Lukatskaya, M.R., Zhao, M-Q., Gogotsi, Y., and Barsoum, M.W.: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78 (2014).Google ScholarPubMed
Janoschka, T., Martin, N., Martin, U., Friebe, C., Morgenstern, S., Hiller, H., Hager, M.D., and Schubert, U.S.: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527(7576), 78 (2015).CrossRefGoogle ScholarPubMed
Li, B., Nie, Z., Vijayakumar, M., Li, G., Liu, J., Sprenkle, V., and Wang, W.: Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015).CrossRefGoogle ScholarPubMed
Li, G.S., Lu, X.C., Kim, J.Y., Meinhardt, K.D., Chang, H.J., Canfield, N.L., and Sprenkle, V.L.: Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density. Nat. Commun. 7, 10683 (2016).CrossRefGoogle ScholarPubMed
Li, G.S., Lu, X.C., Kim, J.Y., Viswanathan, V.V., Meinhardt, K.D., Engelhard, M.H., and Sprenkle, V.L.: An advanced Na-FeCl2 ZEBRA battery for stationary energy storage application. Adv. Energy Mater. 5(12), 1500357 (2015).CrossRefGoogle Scholar
Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S.: Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636 (2014).CrossRefGoogle ScholarPubMed
Yang, Y., Zheng, G., and Cui, Y.: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42(7), 3018 (2013).CrossRefGoogle Scholar
Liu, T., Leskes, M., Yu, W., Moore, A.J., Zhou, L., Bayley, P.M., Kim, G., and Grey, C.P.: Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350(6260), 530 (2015).CrossRefGoogle ScholarPubMed
Lu, D., Shao, Y., Lozano, T., Bennett, W.D., Graff, G.L., Polzin, B., Zhang, J., Engelhard, M.H., Saenz, N.T., Henderson, W.A., Bhattacharya, P., Liu, J., and Xiao, J.: Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5(3), 1400993 (2015).CrossRefGoogle Scholar
Liu, Y., Lin, D., Liang, Z., Zhao, J., Yan, K., and Cui, Y.: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).CrossRefGoogle ScholarPubMed
Qian, J., Henderson, W.A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O., and Zhang, J-G.: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).CrossRefGoogle ScholarPubMed
Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., and Zhang, J-G.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7(2), 513 (2014).CrossRefGoogle Scholar
Yan, K., Lu, Z., Lee, H-W., Xiong, F., Hsu, P-C., Li, Y., Zhao, J., Chu, S., and Cui, Y.: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).CrossRefGoogle Scholar
Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., Chen, X., Shao, Y., Engelhard, M.H., Nie, Z., Xiao, J., Liu, X., Sushko, P.V., Liu, J., and Zhang, J-G.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450 (2013).CrossRefGoogle ScholarPubMed
Muldoon, J., Bucur, C.B., and Gregory, T.: Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 114(23), 11683 (2014).CrossRefGoogle ScholarPubMed
Aurbach, D., Markovsky, B., Weissman, I., Levi, E., and Ein-Eli, Y.: On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 45(1–2), 67 (1999).CrossRefGoogle Scholar
Stevens, D.A. and Dahn, J.R.: High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147(4), 1271 (2000).CrossRefGoogle Scholar
Slater, M.D., Kim, D., Lee, E., and Johnson, C.S.: Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947 (2013).CrossRefGoogle Scholar
Zhao, L., Hu, Y.S., Li, H., Wang, Z.X., and Chen, L.Q.: Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 23(11), 1385 (2011).CrossRefGoogle Scholar
Liang, Y., Yoo, H.D., Li, Y., Shuai, J., Calderon, H.A., Robles Hernandez, F.C., Grabow, L.C., and Yao, Y.: Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15(3), 2194 (2015).CrossRefGoogle ScholarPubMed
Vesborg, P.C.K. and Jaramillo, T.F.: Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2(21), 7933 (2012).CrossRefGoogle Scholar
Cheng, Y., Parent, L.R., Shao, Y., Wang, C., Sprenkle, V.L., Li, G., and Liu, J.: Facile synthesis of Chevrel phase nanocubes and their applications for multivalent energy storage. Chem. Mater. 26(17), 4904 (2014).CrossRefGoogle Scholar
Cheng, Y., Shao, Y., Parent, L.R., Sushko, M.L., Li, G., Sushko, P.V., Browning, N.D., Wang, C., and Liu, J.: Interface promoted reversible Mg insertion in nanostructured Tin–Antimony alloys. Adv. Mater. 27(42), 6598 (2015).CrossRefGoogle ScholarPubMed
Cheng, Y., Shao, Y., Raju, V., Ji, X., Mehdi, B.L., Han, K.S., Engelhard, M.H., Li, G., Browning, N.D., Mueller, K.T., and Liu, J.: Molecular storage of Mg ions with vanadium oxide nanoclusters. Adv. Funct. Mater. 26(20), 3446 (2016).CrossRefGoogle Scholar
Bucur, C.B., Gregory, T., Oliver, A.G., and Muldoon, J.: Confession of a magnesium battery. J. Phys. Chem. Lett. 6(18), 3578 (2015).CrossRefGoogle ScholarPubMed
Yoo, H.D., Shterenberg, I., Gofer, Y., Gershinsky, G., Pour, N., and Aurbach, D.: Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 6(8), 2265 (2013).CrossRefGoogle Scholar
Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., Cohen, Y., Moshkovich, M., and Levi, E.: Prototype systems for rechargeable magnesium batteries. Nature 407(6805), 724 (2000).CrossRefGoogle ScholarPubMed
Mizrahi, O., Amir, N., Pollak, E., Chusid, O., Marks, V., Gottlieb, H., Larush, L., Zinigrad, E., and Aurbach, D.: Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J. Electrochem. Soc. 155(2), A103 (2008).CrossRefGoogle Scholar
Liu, T., Shao, Y., Li, G., Gu, M., Hu, J., Xu, S., Nie, Z., Chen, X., Wang, C., and Liu, J.: A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. J. Mater. Chem. A 2(10), 3430 (2014).CrossRefGoogle Scholar
Doe, R.E., Han, R., Hwang, J., Gmitter, A.J., Shterenberg, I., Yoo, H.D., Pour, N., and Aurbach, D.: Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50(2), 243 (2014).CrossRefGoogle ScholarPubMed
Cheng, Y., Stolley, R.M., Han, K.S., Shao, Y., Arey, B.W., Washton, N.M., Mueller, K.T., Helm, M.L., Sprenkle, V.L., Liu, J., and Li, G.: Highly active electrolytes for rechargeable Mg batteries based on a [Mg2([small mu]-Cl)2]2+ cation complex in dimethoxyethane. Phys. Chem. Chem. Phys. 17(20), 13307 (2015).CrossRefGoogle Scholar
Zhao-Karger, Z., Mueller, J.E., Zhao, X.Y., Fuhr, O., Jacob, T., and Fichtner, M.: Novel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteries. RSC Adv. 4(51), 26924 (2014).CrossRefGoogle Scholar
Tutusaus, O., Mohtadi, R., Arthur, T.S., Mizuno, F., Nelson, E.G., and Sevryugina, Y.V.: An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem., Int. Ed. 54(27), 7900 (2015).CrossRefGoogle ScholarPubMed
McArthur, S.G., Geng, L.X., Guo, J.C., and Lavallo, V.: Cation reduction and comproportionation as novel strategies to produce high voltage, halide free, carborane based electrolytes for rechargeable Mg batteries. Inorg. Chem. Front. 2(12), 1101 (2015).CrossRefGoogle Scholar
Levi, E., Gofer, Y., and Aurbach, D.: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22(3), 860 (2010).CrossRefGoogle Scholar
Nam, K.W., Kim, S., Lee, S., Salama, M., Shterenberg, I., Gofer, Y., Kim, J-S., Yang, E., Park, C.S., Kim, J-S., Lee, S-S., Chang, W-S., Doo, S-G., Jo, Y.N., Jung, Y., Aurbach, D., and Choi, J.W.: The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15(6), 4071 (2015).CrossRefGoogle ScholarPubMed
Shterenberg, I., Salama, M., Gofer, Y., Levi, E., and Aurbach, D.: The challenge of developing rechargeable magnesium batteries. MRS Bull. 39(5), 453 (2014).CrossRefGoogle Scholar
Lu, Z., Schechter, A., Moshkovich, M., and Aurbach, D.: On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466(2), 203 (1999).CrossRefGoogle Scholar
Gregory, T.D., Hoffman, R.J., and Winterton, R.C.: Nonaqueous electrochemistry of magnesium: Applications to energy storage. J. Electrochem. Soc. 137(3), 775 (1990).CrossRefGoogle Scholar
Aurbach, D., Gizbar, H., Schechter, A., Chusid, O., Gottlieb, H.E., Gofer, Y., and Goldberg, I.: Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J. Electrochem. Soc. 149(2), A115 (2002).CrossRefGoogle Scholar
Wang, F-f., Guo, Y-s., Yang, J., Nuli, Y., and Hirano, S-i.: A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Chem. Commun. 48(87), 10763 (2012).CrossRefGoogle ScholarPubMed
Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., Oliver, A.G., Boggess, W.C., and Muldoon, J.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011).CrossRefGoogle ScholarPubMed
Yagi, S., Ichitsubo, T., Shirai, Y., Yanai, S., Doi, T., Murase, K., and Matsubara, E.: A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A 2(4), 1144 (2014).CrossRefGoogle Scholar
Cheng, Y., Shao, Y., Zhang, J-G., Sprenkle, V.L., Liu, J., and Li, G.: High performance batteries based on hybrid magnesium and lithium chemistry. Chem. Commun. 50(68), 9644 (2014).CrossRefGoogle ScholarPubMed
Cho, J-H., Aykol, M., Kim, S., Ha, J-H., Wolverton, C., Chung, K.Y., Kim, K-B., and Cho, B-W.: Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc. 136(46), 16116 (2014).CrossRefGoogle ScholarPubMed
Yoo, H.D., Liang, Y., Li, Y., and Yao, Y.: High areal capacity hybrid magnesium–lithium-ion battery with 99.9% coulombic efficiency for large-scale energy storage. ACS Appl. Mater. Interfaces 7(12), 7001 (2015).CrossRefGoogle ScholarPubMed
Yao, H.R., You, Y., Yin, Y.X., Wan, L.J., and Guo, Y.G.: Rechargeable dual-metal-ion batteries for advanced energy storage. Phys. Chem. Chem. Phys. 18(14), 9326 (2016).CrossRefGoogle ScholarPubMed
Yoo, H.D., Shterenberg, I., Gofer, Y., Doe, R.E., Fischer, C.C., Ceder, G., and Aurbach, D.: A magnesium-activated carbon hybrid capacitor. J. Electrochem. Soc. 161(3), A410 (2014).CrossRefGoogle Scholar
Shao, Y.Y., Liu, T.B., Li, G.S., Gu, M., Nie, Z.M., Engelhard, M., Xiao, J., Lv, D.P., Wang, C.M., Zhang, J.G., and Liu, J.: Coordination chemistry in magnesium battery electrolytes: How ligands affect their performance. Sci. Rep. 3, 3130 (2013).CrossRefGoogle Scholar
Cheng, Y.W., Choi, D.W., Han, K.S., Mueller, K.T., Zhang, J.G., Sprenkle, V.L., Liu, J., and Li, G.S.: Toward the design of high voltage magnesium-lithium hybrid batteries using dual-salt electrolytes. Chem. Commun. 52(31), 5379 (2016).CrossRefGoogle ScholarPubMed
Cheng, Y., Liu, T., Shao, Y., Engelhard, M.H., Liu, J., and Li, G.: Electrochemically stable cathode current collectors for rechargeable magnesium batteries. J. Mater. Chem. A 2(8), 2473 (2014).CrossRefGoogle Scholar
Yagi, S., Tanaka, A., Ichikawa, Y., Ichitsubo, T., and Matsubara, E.: Electrochemical stability of magnesium battery current collectors in a Grignard reagent-based electrolyte. J. Electrochem. Soc. 160(3), C83 (2013).CrossRefGoogle Scholar
Levi, M.D., Lancry, E., Gizbar, H., Lu, Z., Levi, E., Gofer, Y., and Aurbach, D.: Kinetic and thermodynamic studies of Mg2+ and Li+ ion insertion into the Mo6S8 Chevrel phase. J. Electrochem. Soc. 151(7), A1044 (2004).CrossRefGoogle Scholar
Hsu, C-J., Chou, C-Y., Yang, C-H., Lee, T-C., and Chang, J-K.: MoS2/graphene cathodes for reversibly storing Mg2+ and Mg2+/Li+ in rechargeable magnesium-anode batteries. Chem. Commun. 52(8), 1701 (2016).CrossRefGoogle Scholar
Gao, T., Han, F.D., Zhu, Y.J., Suo, L.M., Luo, C., Xu, K., and Wang, C.S.: Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv. Energy Mater. 5(5), 1401507 (2015).CrossRefGoogle Scholar
Su, S., Huang, Z., NuLi, Y., Tuerxun, F., Yang, J., and Wang, J.: A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem. Commun. 51(13), 2641 (2015).CrossRefGoogle Scholar
Su, S., NuLi, Y., Huang, Z., Miao, Q., Yang, J., and Wang, J.: A high-performance rechargeable Mg2+/Li+ hybrid battery using one-dimensional mesoporous TiO2(B) nanoflakes as the cathode. ACS Appl. Mater. Interfaces 8(11A), 7111 (2016).CrossRefGoogle ScholarPubMed
Miao, Q., NuLi, Y., Wang, N., Yang, J., Wang, J., and Hirano, S-i.: Effect of Mg2+/Li+ mixed electrolytes on a rechargeable hybrid battery with Li4Ti5O12 cathode and Mg anode. RSC Adv. 6(4), 3231 (2016).CrossRefGoogle Scholar
Pan, W.J., Liu, X.L., Miao, X.W., Yang, J., Wang, J.L., Nuli, Y., and Hirano, S.: Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode. J. Solid State Electrochem. 19(11), 3347 (2015).CrossRefGoogle Scholar
Wu, N., Yang, Z.Z., Yao, H.R., Yin, Y.X., Gu, L., and Guo, Y.G.: Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium–magnesium co-intercalation. Angew. Chem., Int. Ed. 54(19), 5757 (2015).CrossRefGoogle Scholar
Shi, Y.F., Guo, B.K., Corr, S.A., Shi, Q.H., Hu, Y.S., Heier, K.R., Chen, L.Q., Seshadri, R., and Stucky, G.D.: Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9(12), 4215 (2009).CrossRefGoogle ScholarPubMed
Zhang, Y., Xie, J., Han, Y., and Li, C.: Dual-salt Mg-based batteries with conversion cathodes. Adv. Funct. Mater. 25(47), 7300 (2015).CrossRefGoogle Scholar
Gao, T., Noked, M., Pearse, A.J., Gillette, E., Fan, X., Zhu, Y., Luo, C., Suo, L., Schroeder, M.A., Xu, K., Lee, S.B., Rubloff, G.W., and Wang, C.: Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 137(38), 12388 (2015).CrossRefGoogle Scholar
Zhao-Karger, Z., Zhao, X.Y., Wang, D., Diemant, T., Behm, R.J., and Fichtner, M.: Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater. 5(3), 1401155 (2015).CrossRefGoogle Scholar
Chang, Z., Yang, Y.Q., Wang, X.W., Li, M.X., Fu, Z.W., Wu, Y.P., and Holze, R.: Hybrid system for rechargeable magnesium battery with high energy density. Sci. Rep. 5, 11931 (2015).CrossRefGoogle Scholar
Zhang, Z.H., Xu, H.M., Cui, Z.L., Hu, P., Chai, J.C., Du, H.P., He, J.J., Zhang, J.J., Zhou, X.H., Han, P.X., Cui, G.L., and Chen, L.Q.: High energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performance. J. Mater. Chem. A 4(6), 2277 (2016).CrossRefGoogle Scholar
Ichitsubo, T., Okamoto, S., Kawaguchi, T., Kumagai, Y., Oba, F., Yagi, S., Goto, N., Doi, T., and Matsubara, E.: Toward “rocking-chair type” Mg–Li dual-salt batteries. J. Mater. Chem. A. 3(19), 10188 (2015).CrossRefGoogle Scholar
Sun, X., Duffort, V., and Nazar, L.F.: Prussian blue Mg–Li hybrid batteries. Adv. Sci. 4, 1600044 (2016). doi: 10.1002/advs.201600044.CrossRefGoogle Scholar
Suo, L.M., Hu, Y.S., Li, H., Armand, M., and Chen, L.Q.: A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).CrossRefGoogle ScholarPubMed
Walter, M., Kraychyk, K.V., Ibanez, M., and Koyalenko, M.V.: Efficient and inexpensive sodium–magnesium hybrid battery. Chem. Mater. 27(21), 7452 (2015).CrossRefGoogle Scholar
Dong, H., Li, Y.F., Li, G.S., Sun, C.J., Ren, Y., Lu, Y.H., and Yao, Y.: A magneisum–sodium hybrid battery with high operating voltage. Chem. Commun. 52(31), 8263 (2016).CrossRefGoogle ScholarPubMed