Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T06:03:12.504Z Has data issue: false hasContentIssue false

Scaffolding carbon nanotubes into single-molecule circuitry

Published online by Cambridge University Press:  31 January 2011

Brett R. Goldsmith
Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697
John G. Coroneus
Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697
Jorge A. Lamboy
Department Chemistry, University of California, Irvine, Irvine, California 92697
Gregory A. Weiss
Department of Molecular Biology and Biochemistry and Department of Chemistry, University of California, Irvine, Irvine, California 92697
Philip G. Collins*
Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697
a)Address all correspondence to this author. e-mail:
Get access


While nanowires and nanotubes have been shown to be electrically sensitive to various chemicals, not enough is known about the underlying mechanisms to control or tailor this sensitivity. By limiting the chemically sensitive region of a nanostructure to a single binding site, single molecule precision can be obtained to study the chemoresistive response. We have developed techniques using single-walled- carbon-nanotube (SWCNT) circuits that enable single-site experimentation and illuminate the dynamics of chemical interactions. Discrete changes in the circuit conductance reveal chemical processes happening in real-time and allow SWCNT sidewalls to be deterministically broken, reformed, and conjugated to target species.

Outstanding Symposium Papers
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1Dai, H.: Carbon nanotubes: Opportunities and challenges. Surf. Sci. 500, 218 2002CrossRefGoogle Scholar
2Pengfei, Q.F., Vermesh, O., Grecu, M., Javey, A., Wang, O., Dai, H.J., Peng, S.Cho, K.J.: Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 3, 347 2003Google Scholar
3Cui, J.B., Burghard, M.Kern, K.: Reversible sidewall osmylation of individual carbon nanotubes. Nano Lett. 3, 613 2003CrossRefGoogle Scholar
4Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., Cho, K.J.Dai, H.J.: Nanotube molecular wires as chemical sensors. Science 287, 622 2000CrossRefGoogle ScholarPubMed
5Besteman, K., Lee, J.O., Wiertz, F.G.M., Heering, H.A.Dekker, C.: Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727 2003CrossRefGoogle Scholar
6Snow, E.S., Perkins, F.K., Houser, E.J., Badescu, S.C.Reinecke, T.L.: Chemical detection with a single-walled carbon nanotube capacitor. Science 307, 1942 2005CrossRefGoogle ScholarPubMed
7Cheung, C.L., Hafner, J.H.Lieber, C.M.: Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. USA 97, 3809 2000CrossRefGoogle ScholarPubMed
8Bockrath, M., Liang, W.J., Bozovic, D., Hafner, J.H., Lieber, C.M., Tinkham, M.Park, H.: Resonant electron scattering by defects in single-walled carbon nanotubes. Science 291, 283 2001CrossRefGoogle ScholarPubMed
9Freitag, M., Johnson, A.T., Kalinin, S.V.Bonnell, D.A.: Role of single defects in electronic transport through carbon nanotube field-effect transistors. Phys. Rev. Lett. 89, 216801 2002CrossRefGoogle ScholarPubMed
10Park, H., Zhao, J.J.Lu, J.P.: Distinct properties of single-wall carbon nanotubes with monovalent sidewall additions. Nanotechnology 16, 635 2005CrossRefGoogle Scholar
11Lee, Y-S.Marzari, N.: Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. Phys. Rev. Lett. 97, 116801 2006CrossRefGoogle ScholarPubMed
12Goldsmith, B.R., Coroneus, J.G., Khalap, V.R., Kane, A.A., Weiss, G.A.Collins, P.G.: Conductance-controlled point functionalization of single-walled carbon nanotubes. Science 315, 77 2007CrossRefGoogle ScholarPubMed
13An, L., Owens, J.M., McNeil, L.E.Liu, J.: Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 124, 13688 2002CrossRefGoogle ScholarPubMed
14Huang, S.M., Maynor, B., Cai, X.Y.Liu, J.: Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 15, 1651 2003CrossRefGoogle Scholar
15Fan, Y., Goldsmith, B.R.Collins, P.G.: Identifying and counting point defects in carbon nanotubes. Nat. Mater. 4, 906 2005CrossRefGoogle ScholarPubMed
16Mannik, J., Goldsmith, B.R., Kane, A.Collins, P.G.: Chemically induced conductance switching in carbon nanotube circuits. Phys. Rev. Lett. 97, 16601 2006CrossRefGoogle ScholarPubMed
17Coroneus, J.G., Goldsmith, B.R., Lamboy, J., Kane, A.A., Collins, P.G.Weiss, G.A.: Mechanism-guided improvements to the single molecule oxidation of carbon nanotube sidewalls. Chem. Phys. Chem. (2008, in press)Google Scholar
18Kinoshita, K.: Carbon—Electrochemical and physicochemical properties Wiley Interscience New York 1988Google Scholar
19Bachtold, A., Fuhrer, M.S., Plyasunov, S., Forero, M., Anderson, E.H., Zettl, A.McEuen, P.L.: Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 84, 6082 2000CrossRefGoogle ScholarPubMed
20Kingrey, D., Khatib, O.Collins, P.G.: Electronic fluctuations in nanotube circuits and their sensitivity to gases and liquids. Nano Lett. 6, 1564 2006CrossRefGoogle ScholarPubMed
21Grabarek, Z.Gergely, J.: Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185, 131 1990CrossRefGoogle ScholarPubMed
22Xie, S.N.: Single-molecule approach to enzymology. Single Molecules 2, 229 20013.0.CO;2-9>CrossRefGoogle Scholar