Hostname: page-component-59f8fd8595-gl4p7 Total loading time: 0 Render date: 2023-03-23T01:10:52.685Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

A study of (111) oriented epitaxial thin films of In2O3 on cubic Y-doped ZrO2 by synchrotron-based x-ray diffraction

Published online by Cambridge University Press:  15 June 2012

Anna Regoutz
Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
Kelvin H.L. Zhang
Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
Russell G. Egdell
Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
Didier Wermeille
XMaS CRG Beamline, European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France; and Department of Physics, University of Liverpool, Liverpool, L69 7ZE, United Kingdom
Roger A. Cowley
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
Get access


Reciprocal space mapping using synchrotron-based x-ray diffraction has been used to study the effects of strain and strain relaxation in (111) oriented thin films of In2O3 on cubic Y-stabilized ZrO2 over a range of epilayer thicknesses between 35 and 420 nm. Maps around the epilayer (1026) reflection show that the 35-nm film is highly strained with a lateral periodicity close to that of the substrate, while the 420-nm film is almost completely relaxed. Analysis of the map for the former sample leads to an estimate of 0.31 for the Poisson ratio for In2O3. The mosaic spread deduced from transverse scans through the epilayer (444) and (666) reflections increases from 0.1° for the 35-nm-thick film to 0.3° for the 420-nm-thick film. These changes are discussed in relation to the morphological changes observed by atomic force microscopy.

Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Ginley, D.S., Hosono, H., and Paine, D.C.: Handbook of Transparent Conductors (Springer, New York, 2010).Google Scholar
2.Hosono, H.: Recent progress in transparent oxide semiconductors: Materials and device application. Thin Solid Films 515, 6000 (2007).CrossRefGoogle Scholar
3.Walsh, A., Da Silva, J.L.F., Wei, S.H., Korber, C., Klein, A., Piper, L.F.J., DeMasi, A., Smith, K.E., Panaccione, G., Torelli, P., Payne, D.J., Bourlange, A., and Egdell, R.G.: Nature of the band gap of In2O3 revealed by first-principles calculations and x-ray spectroscopy. Phys. Rev. Lett. 100, 167402 (2008).CrossRefGoogle ScholarPubMed
4.Bourlange, A., Payne, D.J., Egdell, R.G., Foord, J.S., Edwards, P.P., Jones, M.O., Schertel, A., Dobson, P.J., and Hutchison, J.L.: Growth of In2O3(100) on Y-stabilized ZrO2(100) by O-plasma assisted molecular beam epitaxy. Appl. Phys. Lett. 92, 092117 (2008).CrossRefGoogle Scholar
5.Bourlange, A., Payne, D.J., Palgrave, R.G., Foord, J.S., Egdell, R.G., Jacobs, R.M.J., Schertel, A., Hutchison, J.L., and Dobson, P.J.: Investigation of the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 517, 4286 (2009).CrossRefGoogle Scholar
6.Bierwagen, O. and Speck, J.S.: Nucleation of islands and continuous high-quality In2O3(001) films during plasma-assisted molecular beam epitaxy on Y-stabilized ZrO2(001). J. Appl. Phys. 107, 113159 (2010).CrossRefGoogle Scholar
7.Bierwagen, O. and Speck, J.S.: High electron mobility In2O3(001) and (111) thin films with nondegenerate electron concentration. Appl. Phys. Lett. 97, 072103 (2010).CrossRefGoogle Scholar
8.Morales, E.H., He, Y.B., Vinnichenko, M., Delley, B., and Diebold, U.: Surface structure of Sn-doped In2O3 (111) thin films by STM. New J. Phys. 10, 125030 (2008).CrossRefGoogle Scholar
9.Zhang, K.H.L., Payne, D.J., Palgrave, R.G., Lazarov, V.K., Chen, W., Wee, A.T.S., McConville, C.F., King, P.D.C., Veal, T.D., Panaccione, G., Lacovig, P., and Egdell, R.G.: Surface structure and electronic properties of In2O3(111) single-crystal thin films grown on Y-stabilized ZrO2(111). Chem. Mat. 21, 4353 (2009).CrossRefGoogle Scholar
10.Bourlange, A., Payne, D.J., Jacobs, R.M.J., Egdell, R.G., Foord, J.S., Schertel, A., Dobson, P.J., and Hutchison, J.L.: Growth of microscale In2O3 islands on Y-stabilized zirconia(100) by molecular beam epitaxy. Chem. Mat. 20, 4551 (2008).CrossRefGoogle Scholar
11.Zhang, K.H.L., Walsh, A., Catlow, C.R.A., Lazarov, V.K., and Egdell, R.G.: Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia. Nano Lett. 10, 3740 (2010).CrossRefGoogle ScholarPubMed
12.Walsh, A. and Catlow, C.R.A.: Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory. J. Mat. Chem. 20, 10438 (2010).CrossRefGoogle Scholar
13.Agoston, P. and Albe, K.: Thermodynamic stability, stoichiometry, and electronic structure of bcc-In2O3 surfaces. Phys. Rev. B 84, 455801 (2011).CrossRefGoogle Scholar
14.Walsh, A., Catlow, C.R.A., Zhang, K.H.L., and Egdell, R.G.: Control of the band-gap states of metal oxides by the application of epitaxial strain: The case of indium oxide. Phys. Rev. B 83, 161202 (2011).CrossRefGoogle Scholar
15.Zhang, K.H.L., Lazarov, V.K., Veal, T.D., Oropeza, F.E., McConville, C.F., Egdell, R.G., and Walsh, A.: Thickness dependence of the strain, band gap and transport properties of epitaxial In2O3 thin films grown on Y-stabilised ZrO2 (111) J. Phys. Condens. Matter 23, 334211 (2011).CrossRefGoogle Scholar
16.Brown, S.D., Bouchenoire, L., Bowyer, D., Kervin, J., Laundy, D., Longfield, M.J., Mannix, D., Paul, D.F., Stunault, A., Thompson, P., Cooper, M.J., Lucas, C.A., and Stirling, W.G.: The XMaS beamline at ESRF: Instrumental developments and high resolution diffraction studies. J. Synchrotron Radiat. 8, 1172 (2001).CrossRefGoogle ScholarPubMed
17.Chen, H., Li, Y.K., Peng, C.S., Liu, H.F., Liu, Y.L., Huang, Q., Zhou, J.M., and Xue, Q.K.: Crosshatching on a SiGe film grown on a Si(001) substrate studied by Raman mapping and atomic force microscopy. Phys. Rev. B 65, 233303 (2002).CrossRefGoogle Scholar
18.Lutz, M.A., Feenstra, R.M., Legoues, F.K., Mooney, P.M., and Chu, J.O.: Influence of misfit dislocations on the surface-morphology of Si1-xGex films. Appl. Phys. Lett. 66, 724 (1995).CrossRefGoogle Scholar
19.Albrecht, M., Christiansen, S., Michler, J., Dorsch, W., Strunk, H.P., Hansson, P.O., and Bauser, E.: Surface ripples, crosshatch pattern, and dislocation formation—cooperating mechanisms in lattice mismatch relaxation. Appl. Phys. Lett. 67, 1232 (1995).CrossRefGoogle Scholar
20.Cowley, R.A., Bourlange, A., Hutchison, J.L., Zhang, K.H.L., Korsunsky, A.M., and Egdell, R.G.: Tilting during island growth of In2O3 on Y-stabilized ZrO2(001) revealed by high-resolution x-ray diffraction. Phys. Rev. B 82, 165312 (2010).CrossRefGoogle Scholar
21.Babkevich, A.Y., Cowley, R.A., Mason, N.J., Sandiford, S. and Stunault, A.: X-ray scattering from epitxial GaSb/InAs thin films below and above the critical thickness. J. Phys. Condens Matter 14, 7101 (2002).CrossRefGoogle Scholar
22.Zhang, K.H.L., Regoutz, A., Palgrave, R.G., Payne, D.J., Egdell, R.G., Walsh, A., Collins, S.P., Wermeille, D., and Cowley, R.A.: Determination of the Poisson ratio of (001) and (111) oriented thin films of In2O3 by synchrotron-based x-ray diffraction. Phys. Rev. B 84, 233301 (2011).CrossRefGoogle Scholar
23.Segmuller, A.: Characterization of epitaxial thin-films by x-ray-diffraction. J. Vac. Sci. Technol., A 9, 2477 (1991).CrossRefGoogle Scholar
24.Walsh, A., Catlow, C.R.A., Sokol, A.A., and Woodley, S.M.: Physical properties, intrinsic defects, and phase stability of indium sesquioxide. Chem. Mat. 21, 4962 (2009).CrossRefGoogle Scholar
25.Neerinck, D.G. and Vink, T.J.: Depth profiling of thin ITO films by grazing incidence x-ray diffraction. Thin Solid Films 278, 12 (1996).CrossRefGoogle Scholar
26.Ingel, R.P. and Lewis, D.: Elastic-anisotropy in zirconia single-crystals. J. Am. Ceram Soc. 71, 265 (1988).CrossRefGoogle Scholar
27.Selcuk, A. and Atkinson, A.: Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC). J. Eur. Ceram. Soc. 17, 1523 (1997).CrossRefGoogle Scholar