Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-x6crq Total loading time: 0.353 Render date: 2022-07-06T19:04:57.452Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Synthesis, microstructure, and photoluminescence properties of thornlike SiC:Tb nanostructures

Published online by Cambridge University Press:  31 January 2011

Erqing Xie*
Affiliation:
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
*
a)Address all correspondence to this author. e-mail: xieeq@lzu.edu.cn
Get access

Abstract

Thornlike Tb-doped SiC (SiC:Tb) nanostructures were synthesized through a carbothermal reduction of electrospun Tb-doped SiO2 nanofibers (SiO2:Tb). The synthesized SiC nanostructures annealed at a high temperature of 1300 °C displayed a unique morphology and a high crystalline quality with the β-SiC phase. Strong green-light emissions were detected from the SiC:Tb samples. Photoluminescence excitation results show that, besides a small amount of energy coming from the SiC cores (464 nm), most of the energy needed for the excitation of Tb3+ ions comes from the light absorption of the SiO2–Tb surface layers (295 nm) and near-interface regions in the samples (388 nm). Transmission electron microscopy, energy dispersive spectrometry, and Raman analyses suggested that the formations of Tb clusters and SiO2 surface layers are very important to the enhancement of the luminescence behaviors of Tb3+ ions. Finally, we have constructed an excitation model and further proposed an energy transfer mechanism for these thornlike SiC:Tb nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kenyon, A.J.Recent developments in rare-earth doped materials for optoelectronics. Prog. Quantum Electron. 26, 225 (2002)CrossRefGoogle Scholar
2.Choyke, W.J., Devaty, R.P., Clemen, L.L., Yoganathan, M., Pensl, G., Hässler, Ch.Intense erbium-1.54-μm photoluminescence from 2 to 525 K in ion-implanted 4H, 6H, 15R, and 3C SiC. Appl. Phys. Lett. 65, 1668 (1994)CrossRefGoogle Scholar
3.Steckl, A.J., Devrajan, J., Choyke, W.J., Devaty, R.P., Yoganathan, M., Novak, S.W.Effect of annealing temperature on 1.5 μm photoluminescence from Er-implanted 6H-SiC. J. Electron. Mater. 25, 869 (1996)CrossRefGoogle Scholar
4.Markmann, M., Neufeld, E., Sticht, A., Brunner, K., Abstreiter, G., Buchal, Ch.Enhancement of erbium photoluminescence by substitutional C alloying of Si. Appl. Phys. Lett. 75, 2584 (1999)CrossRefGoogle Scholar
5.Uekusa, S., Awahara, K., Kumagai, M.Photoluminescence from Er-implanted polycrystalline 3C SiC. IEEE Trans. Electron Devices 46, 572 (1999)CrossRefGoogle Scholar
6.Babunts, R.A., Vetrov, V.A., Il'in, I.V., Mokhov, E.N., Romanov, N.G., Khramtsov, V.A., Baranov, P.G.Properties of erbium luminescence in bulk crystals of silicon carbide. Phys. Solid State 42, 829 (2000)CrossRefGoogle Scholar
7.Kozanecki, A., Glukhanyuk, V., Jantsch, W.High-resolution spectroscopy of Er3+ ions in 6H SiC. Mater. Sci. Eng., B 105, 169 (2003)CrossRefGoogle Scholar
8.Gallis, S., Efstathiadis, H., Huang, M., Nyein, E.E., Hommerich, U., Kaloyeros, A.E.Room-temperature photoluminescence at 1540 nm from amorphous silicon carbide films implanted with erbium. J. Mater. Res. 19, 2389 (2004)CrossRefGoogle Scholar
9.Gallis, S., Huang, M., Efstathiadis, H., Eisenbraun, E., Kaloyerosa, A.E., Nyein, E.E., Hommerich, U.Photoluminescence in erbium-doped amorphous silicon oxycarbide thin films. Appl. Phys. Lett. 87, 091901 (2005)CrossRefGoogle Scholar
10.Glukhanyuk, V., Kozanecki, A.Site selective studies of Er emission centers in Er-implanted 6H–SiC. Appl. Phys. Lett. 89, 211114 (2006)CrossRefGoogle Scholar
11.Kawai, S., Masaki, T., Kato, Y., Motooka, T.Luminescence from Nd- and Dy-ion-implanted 4H–SiC. Appl. Phys. Lett. 88, 191904 (2006)CrossRefGoogle Scholar
12.Sendova-Vassileva, M., Nikolaeva, M., Dimova-Malinovska, D., Tzolov, M., Pivin, J.C.Room-temperature photoluminescence from Tb3+ ions in SiO2 and a-SiC:H thin films deposited by magnetron co-sputtering. Mater. Sci. Eng., B 81, 185 (2001)CrossRefGoogle Scholar
13.Nikolaeva, M., Sendova-Vassileva, M., Dimova-Malinovska, D., Pivin, J.C.Optical properties and room-temperature photoluminescence from Tb3+ ions in a-Si1−xCx:H thin films. Vacuum 69, 233 (2003)CrossRefGoogle Scholar
14.Xu, D.Y., Liu, Y.P., He, Z.W., Fang, Z.B., Liu, X.Q., Wang, Y.Y.The behavior of photolumine scence from SiC:Tb films deposited on porous silicon substrate. Acta Phys. Sin.-Ch. Ed 53, 2694 (2004)Google Scholar
15.Xu, D.Y., Liu, Y.P., Chen, Z.Y., He, Z.W., Liu, X.Q., Wang, Y.Y.Effects of annealing on the structure and photoluminescence of amorphous SiC: Tb films deposited on porous silicon substrate. Mater. Sci. Forum 475–479, 3681 (2005)CrossRefGoogle Scholar
16.Weingärtner, R., Erlenbach, O., de Zela, F., Winnacker, A., Brauer, I., Strunk, H.P.Cathodoluminescence measurements and thermal activation of rare earth doped (Tb3+, Dy3+ and Eu3+) a-SiC thin films prepared by rf magnetron sputtering. Mater. Sci. Forum 527–529, 663 (2006)CrossRefGoogle Scholar
17.Amekura, H., Eckau, A., Carius, R., Buchal, Ch.Room-temperature photoluminescence from Tb ions implanted in SiO on Si. J. Appl. Phys. 84, 3867 (1998)CrossRefGoogle Scholar
18.Lu, F., Carius, R., Alam, A., Heuken, M., Buchal, Ch.Green electroluminescence from a Tb-doped AlN thin-film device on Si. J. Appl. Phys. 92, 2457 (2002)CrossRefGoogle Scholar
19.Liang, X., Yang, Y., Zhu, C., Yuan, S., Chen, G., Pring, A., Xia, F.Luminescence properties of Tb–Sm codoped glasses for white light emitting diodes. Appl. Phys. Lett. 91, 091104 (2007)CrossRefGoogle Scholar
20.Kassab, L.R.P., de Almeida, R., da Silva, D.M., de Araújo, C.B.Luminescence of Tb doped TeO–ZnO–NaO–PbO glasses containing silver nanoparticles. J. Appl. Phys. 104, 093531 (2008)CrossRefGoogle Scholar
21.Fan, J.Y., Wu, X.L., Chu, P.K.Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties. Prog. Mater. Sci. 51, 983 (2006)CrossRefGoogle Scholar
22.Zhou, W., Zhang, Y., Niu, X., Min, G.One-dimensional SiC nanostructures: Synthesis and propertiesOne-Dimensional Nanostructures edited by Z.M. Wang (Springer Press, New York 2008)17CrossRefGoogle Scholar
23.Shor, J.S., Bemis, L., Kurtz, A.D., Grimberg, I., Weiss, B.Z., MacMillian, M.F., Choyke, W.J.Characterization of nanocrystallites in porous p-type 6H–SiC. J. Appl. Phys. 76, 4045 (1994)CrossRefGoogle Scholar
24.Han, W., Fan, S., Li, Q., Liang, W., Gu, B., Yu, D.Continuous synthesis and characterization of silicon carbide nanorods. Chem. Phys. Lett. 265, 374 (1997)CrossRefGoogle Scholar
25.Liang, C.H., Meng, G.W., Zhang, L.D., Wu, Y.C., Cui, Z.Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles. Chem. Phys. Lett. 329, 323 (2000)CrossRefGoogle Scholar
26.Hu, J.Q., Lu, Q.Y., Tang, K.B., Deng, B., Jiang, R.R., Qian, Y.T., Yu, W.C., Zhou, G.E., Liu, X.M., Wu, J.X.Synthesis and characterization of SiC nanowires through a reduction–carburization route. J. Phys. Chem. B 104, 5251 (2000)CrossRefGoogle Scholar
27.Gundiah, G., Madhav, G.V., Govindaraj, A., Seikh, M.M., Rao, C.N.R.Synthesis and characterization of silicon carbide, silicon oxynitride and silicon nitride nanowires. J. Mater. Chem. 12, 1606 (2002)CrossRefGoogle Scholar
28.Feng, D.H., Jia, T.Q., Li, X.X., Xu, Z.Z., Chen, J., Deng, S.Z., Wu, Z.S., Xu, N.S.Catalytic synthesis and photoluminescence of needle-shaped 3C–SiC nanowires. Solid State Commun. 128, 295 (2003)CrossRefGoogle Scholar
29.Seong, H.K., Choi, H.J., Lee, S.K., Lee, J.I., Choi, D.J.Optical and electrical transport properties in silicon carbide nanowires. Appl. Phys. Lett. 85, 1256 (2004)CrossRefGoogle Scholar
30.Li, K.Z., Wei, J., Li, H.J., Li, Z.J., Hou, D.S., Zhang, Y.L.Photoluminescence of hexagonal-shaped SiC nanowires prepared by sol-gel process. Mater. Sci. Eng., A 460–461, 233 (2007)CrossRefGoogle Scholar
31.Wei, J., Li, K., Li, H., Hou, D., Zhang, Y., Wang, C.Large-scale synthesis and photoluminescence properties of hexagonal-shaped SiC nanowires. J. Alloys Compd. 462, 271 (2008)CrossRefGoogle Scholar
32.Chen, J., Wu, R., Yang, G., Pan, Y., Lin, J., Wu, L., Zhai, R.Synthesis and photoluminescence of needle-shaped 3C–SiC nanowires on the substrate of PAN carbon fiber. J. Alloys Compd. 456, 320 (2008)CrossRefGoogle Scholar
33.Ye, H., Titchenal, N., Gogotsi, Y., Ko, F.SiC nanowires synthesized from electrospun nanofiber templates. Adv. Mater. 17, 1531 (2005)CrossRefGoogle Scholar
34.Li, J., Zhang, Y., Zhong, X., Yang, K., Meng, J., Cao, X.Single-crystalline nanowires of SiC synthesized by carbothermal reduction of electrospun PVP/TEOS composite fibers. Nanotechnology 18, 245606 (2007)CrossRefGoogle Scholar
35.Zhou, J., Zhou, M., Chen, Z., Zhang, Z., Chen, C., Li, R., Gao, X., Xie, E.SiC nanotubes arrays fabricated by sputtering using electrospun PVP nanofiber as templates. Surf. Coat. Technol. 203, 3219 (2009)CrossRefGoogle Scholar
36.Sasaki, Y., Nishina, Y., Sato, M., Okamura, K.Raman study of SiC fibers made from polycarbosilane. J. Mater. Sci. 22, 443 (1987)CrossRefGoogle Scholar
37.Xi, G., Yu, S., Zhang, R., Zhang, M., Ma, D., Qian, Y.Crystalline silicon carbide nanoparticles encapsulated in branched wavelike carbon nanotubes: Synthesis and optical properties. J. Phys. Chem. B 109, 13200 (2005)CrossRefGoogle Scholar
38.Shapiro, S.M., O'Shea, D.C., Cummins, H.Z.Raman scattering study of the alpha-beta phase transition in quartz. Phys. Rev. Lett. 19, 361 (1967)CrossRefGoogle Scholar
39.Glinka, Y.D., Jaroniec, M.Spontaneous and stimulated Raman scattering from surface phonon modes in aggregated SiO2 nanoparticles. J. Phys. Chem. B 101, 8832 (1997)CrossRefGoogle Scholar
40.Menga, A., Lia, Z., Zhang, J., Gao, L., Li, H.Synthesis and raman scattering of β-SiC/SiO2 core-shell nanowires. J. Cryst. Growth 308, 263 (2007)CrossRefGoogle Scholar
41.Li, Z., Gao, W., Meng, A., Geng, Z., Gao, L.Large-scale synthesis and raman and photoluminescence properties of single crystalline β-SiC nanowires periodically wrapped by amorphous SiO2 nanospheres 2. J. Phys. Chem. C 113, 91 (2009)CrossRefGoogle Scholar
42.Zhou, J.Y., Chen, Z.Y., Zhou, M., Gao, X.P., Xie, E.Q.SiC nanorods grown on electrospun nanofibers using Tb as catalyst: Fabrication, characterization, and photoluminescence properties. Nanoscale Res. Lett. 4, 814 (2009)CrossRefGoogle Scholar
43.Chen, Z., Wang, Y., Zou, Y., Wang, J., Li, Y., Zhang, H.Origin of the blue photoluminescence from SiO2(SiC)/SiC on Si substrate. Appl. Phys. Lett. 89, 141913 (2006)CrossRefGoogle Scholar
44.Chen, Z., Wang, Y.X., He, H.P., Zou, Y.M., Wang, J.W., Li, Y.Mechanism of intense blue photoluminescence in silica wires. Solid State Commun. 135, 247 (2005)CrossRefGoogle Scholar
45.Skuja, L.Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: A luminescence study. J. Non-Cryst. Solids 149, 77 (1992)CrossRefGoogle Scholar
46.Yamashita, N., Hamada, T.Photoluminescence of the MgSO4:Tb3+, Na+ powder phosphor. Jpn. J. Appl. Phys. 28, 1326 (1999)CrossRefGoogle Scholar
47.Zhou, L., Yan, B.Synthesis, microstructure and photoluminescence of Eu3+/Tb3+ activated Y2SiO5 nanophosphors by new silicate sources. Appl. Surf. Sci. 254, 1847 (2008)CrossRefGoogle Scholar
48.Liu, X.M., Yao, K.F.Large-scale synthesis and photoluminescence properties of SiC/SiOx nanocables. Nanotechnology 16, 2932 (2005)CrossRefGoogle Scholar
49.Gerstmann, U., Rauls, E., Sanna, S., Frauenheim, Th., Overhof, H.Co-doping of Er-doped SiC with oxygen—A promising way towards efficient 1540 nm emission at room temperature. Mater. Sci. Forum 475–479, 3681 (2006)Google Scholar
50.Fu, Z., Yan, B., Liu, R., Ruan, Y.Ultraviolet photoluminescence from 4H–SiC nanocrystalline films deposited on silicon substrate. J. Mater. Res. 17, 570 (2002)CrossRefGoogle Scholar
51.Qin, G.G.Extended quantum confinement luminescence center model for photoluminescence from oxidized porous silicon and nanometer-Si-particle- or nanometer-Ge-particle-embedded silicon oxide films. Mater. Res. Bull. 33, 1857 (1998)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis, microstructure, and photoluminescence properties of thornlike SiC:Tb nanostructures
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Synthesis, microstructure, and photoluminescence properties of thornlike SiC:Tb nanostructures
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Synthesis, microstructure, and photoluminescence properties of thornlike SiC:Tb nanostructures
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *