Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-sz752 Total loading time: 0.324 Render date: 2023-02-03T04:25:38.474Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Synthesis of Ni ferrite and Co ferrite rodlike particles by superposition of a constant magnetic field

Published online by Cambridge University Press:  31 January 2011

Fernando Vereda*
Affiliation:
Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Granada E-18071, Spain
Juan de Vicente
Affiliation:
Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Granada E-18071, Spain
Roque Hidalgo-Álvarez
Affiliation:
Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Granada E-18071, Spain
*
a)Address all correspondence to this author. e-mail: fvereda@ugr.es
Get access

Abstract

We report the fabrication of micron-sized rodlike particles of nonstoichiometric Co and Ni ferrites by aging coprecipitated Fe(OH)2 and M(OH)2—where M is either Ni or Co—at 90 °C in the presence of an external magnetic field (B ≈ 405 mT). Potassium nitrate was used as a mild oxidant. Resultant particles were analyzed by means of electron microscopy, x-ray powder diffraction (XRD), magnetometry, energy dispersive x-ray (EDX) spectrometry, and atomic absorption spectroscopy. Rodlike particles of both types of ferrite exhibited a relatively uniform thickness, an average aspect ratio close to 10, and have a spinel crystalline structure. EDX spectrometry and atomic absorption spectroscopy confirmed the incorporation of Ni2+ and Co2+ in the respective ferrite particles. The incorporation of Co2+ led to non-negligible remanence and coercivity. The incorporation of Ni2+ led to a lower saturation magnetization, whereas the remanence and coercivity of the Ni ferrite were very low, still typical of a soft ferrimagnetic material. The mechanism of formation of the rodlike particles was investigated by the time-dependent observation of growing Ni ferrite rods.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shine, A.D.Armstrong, R.C.: The rotation of a suspended axisymmetrical ellipsoid in a magnetic-field. Rheol. Acta 26, 152 1987CrossRefGoogle Scholar
2Satoh, A.Sakuda, Y.: Rheology and orientational distributions of rodlike particles with magnetic moment normal to the particle axis for semi-dense dispersions (analysis by means of mean-field approximation). J. Colloid Interface Sci. 308, 532 2007CrossRefGoogle ScholarPubMed
3Reinhardt, U.T., Degroot, E.L.M., Fuller, G.G.Kulicke, W.M.: Rheooptical characterization (flow-birefringence and flow-dichroism) of the tobacco-mosaic-virus. Macromol. Chem. Phys. 196, 63 1995CrossRefGoogle Scholar
4Graf, C., Kramer, H., Deggelmann, M., Hagenbuchle, M., Johner, C., Martin, C.Weber, R.: Rheological properties of suspensions of interacting rodlike FD-virus particles. J. Chem. Phys. 98, 4920 1993CrossRefGoogle Scholar
5Ookubo, N., Komatsubara, M., Nakajima, H.Wada, Y.: Infinite dilution viscoelastic properties of poly(γ-benzyl-L-glutamate) in M-cresol. Biopolymers 15, 929 1976CrossRefGoogle Scholar
6Wierenga, A.M.Philipse, A.P.: Low-shear viscosities of dilute dispersions of colloidal rodlike silica particles in cyclohexane. J. Colloid Interface Sci. 180, 360 1996CrossRefGoogle Scholar
7López-López, M.T., Vertelov, G., Bossis, G., Kuzhir, P.Durán, J.D.G.: New magnetorheological fluids based on magnetic fibers. J. Mater. Chem. 17, 3839 2007CrossRefGoogle Scholar
8Sugimoto, T.Matijević, E.: Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J. Colloid Interface Sci. 74, 227 1980CrossRefGoogle Scholar
9Vereda, F., de Vicente, J.Hidalgo-Álvarez, R.: Influence of a magnetic field on the formation of magnetite particles via two precipitation methods. Langmuir 23, 3581 2007CrossRefGoogle ScholarPubMed
10Charles, S.W.Issari, B.: Preparation and properties of small acicular particles of cobalt. J. Magn. Magn. Mater. 54-7, 743 1986CrossRefGoogle Scholar
11Formaro, L.: Magnetically induced variations in the morphology of Fe3O4 particles precipitated from solutions. Mater. Lett. 6, 295 1988CrossRefGoogle Scholar
12Wang, J., Chen, Q.W., Zeng, C.Hou, B.Y.: Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater. 16, 137 2004CrossRefGoogle Scholar
13Niu, H.L., Chen, Q.W., Zhu, H.F., Lin, Y.S.Zhang, X.: Magnetic field-induced growth and self-assembly of cobalt nanocrystallites. J. Mater. Chem. 13, 1803 2003CrossRefGoogle Scholar
14Niu, H.L., Chen, Q.W., Ning, M., Jia, Y.S.Wang, X.J.: Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields. J. Phys. Chem. B 108, 3996 2004CrossRefGoogle Scholar
15Zhang, Y., Shi, R., Xiong, H.Q.Zhai, Y.: One-dimensional magnetite chains of nanoparticles synthesis by self-assembly in magnetic field. Int. J. Mod. Phys. B 19, 2757 2005CrossRefGoogle Scholar
16Domingo, C., Rodríguez-Clemente, R.Blesa, M.A.: The pathways to spinel iron-oxides by oxidation of iron (II) in basic-media. Mater. Res. Bull. 26, 47 1991CrossRefGoogle Scholar
17van Groenou, A. Broese, Bongers, P.F.Stuyts, A.L.: Magnetism microstructure and crystal chemistry of spinel ferrites. Mater. Sci. Eng. 3, 317 1969CrossRefGoogle Scholar
18Regazzoni, A.E.Matijević, E.: Formation of spherical colloidal nickel ferrite particles as model corrosion products. Corrosion 38, 212 1982CrossRefGoogle Scholar
19Regazzoni, A.E.Matijević, E.: Formation of uniform colloidal mixed cobalt nickel ferrite particles. Colloids Surf. 6, 189 1983CrossRefGoogle Scholar
20Tamura, H.Matijević, E.: Precipitation of cobalt ferrites. J. Colloid Interface Sci. 90, 100 1982CrossRefGoogle Scholar
21Sugimoto, T.: Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 28, 65 1987CrossRefGoogle Scholar
22de Vicente, J., Delgado, A.V., Plaza, R.C., Duran, J.D.G.González-Caballero, F.: Stability of cobalt ferrite colloidal particles. Effect of pH and applied magnetic fields. Langmuir 16, 7954 2000CrossRefGoogle Scholar
23Plaza, R.C., de Vicente, J., Gómez-Lopera, S.Delgado, A.V.: Stability of dispersions of colloidal nickel ferrite spheres. J. Colloid Interface Sci. 242, 306 2001CrossRefGoogle Scholar
24Vereda, F., de Vicente, J.Hidalgo-Álvarez, R.: Colloidal characterization of micron-sized rod-like magnetite particles. Colloids Surf., A (2008, in press), DOI: 10.1016/j.colsurfa.2007.06.055Google Scholar
25de Vicente, J.: Ph.D. Dissertation. Universidad de Granada,2002Google Scholar
26Altermatt, U.D.Brown, I.D.: A real-space computer-based symmetry algebra. Acta Crystallogr., Sect. A: Fundam. Crystallogr. 43, 125 1987CrossRefGoogle Scholar
27Guinier, A.: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, 1st ed.Dover Publications, Inc. Mineola, NY994121–150Google Scholar
29Vereda, F., Rodríguez-González, B., de Vicente, J.Hidalgo-Álvarez, R.: Evidence of direct crystal growth and presence of hollow microspheres in magnetite particles prepared by oxidation of Fe(OH)2. J. Colloid Interface Sci. 318, 520 2008CrossRefGoogle ScholarPubMed
30de Vicente, J., López-López, M.T., Duran, J.D.G.González-Caballero, F.: Shear flow behavior of confined magnetorheological fluids at low magnetic field strengths. Rheol. Acta 44, 94 2004CrossRefGoogle Scholar
31Henderson, C.M.B., Charnock, J.M.Plant, D.A.: Cation occupancies in Mg, Co, Ni, Zn, Al ferrite spinels: A multi-element EXAFS study. J. Phys. Condens. Matter 19, 076214 2007CrossRefGoogle ScholarPubMed
32Cabañas, A.Poliakoff, M.: The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J. Mater. Chem. 11, 1408 2001CrossRefGoogle Scholar
33Kodama, T., Wada, Y., Yamamoto, T., Tsuji, M.Tamaura, Y.: Synthesis and characterization of ultrafine nickel (II)-bearing ferrites (NixFe3−xO4, x = 0.14–1.0). J. Mater. Chem. 5, 1413 1995CrossRefGoogle Scholar
34Gokon, N., Hasegawa, N., Kaneko, H., Ohara, T.Tamaura, Y.: A high magnetic field effect on the M(II)-substituted magnetite formation (M = Ni, Mn, Co) in the wet process. J. Magn. Magn. Mater. 256, 293 2003CrossRefGoogle Scholar
35Sidhu, P.S., Gilkes, R.J.Posner, A.M.: Synthesis and some properties of Co, Ni, Zn, Cu. Mn and Cd substituted magnetites. J. Inorg. Nucl. Chem. 40, 429 1978CrossRefGoogle Scholar
36Sorescu, M., Grabias, A., Tarabasanu-Mihaila, D.Diamandescu, L.: From magnetite to cobalt ferrite. J. Mater. Synth. Process. 9, 119 2001CrossRefGoogle Scholar
37Mathew, D.S.Juang, R.S.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51 2007CrossRefGoogle Scholar
38Pillai, V.Shah, D.O.: Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243 1996CrossRefGoogle Scholar
39de Vicente, J., Duran, J.D.G., Delgado, A.V., González-Caballero, F.Bossis, G.: Effect of magnetic hysteresis of the solid phase on the rheological properties of MR fluids. Int. J. Mod. Phys. B 16, 2576 2002CrossRefGoogle Scholar
40Cabuil, V.: Encyclopedia of Surface and Colloid Science Marcel Dekker Ltd New York 2002 4306–4321Google Scholar
41Daou, T.J., Pourroy, G., Begin-Colin, S., Greneche, J.M., Ulhaq-Bouillet, C., Legare, P., Bernhardt, P., Leuvrey, C.Rogez, G.: Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem. Mater. 18, 4399 2006CrossRefGoogle Scholar
42Lelis, M.F.F., Fabris, J.D., Mussel, W.N.Takeuchi, A. Yoshihaki: Preparation and characterization of nickel- and cobalt-doped magnetites. Mater. Res. 6, 145 2003CrossRefGoogle Scholar
43Shafi, K.V.P.M., Koltypin, Y., Gedanken, A., Prozorov, R., Balogh, J., Lendvai, J.Felner, I.: Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J. Phys. Chem. B 101, 6409 1997CrossRefGoogle Scholar
44Wang, J.: Prepare highly crystalline NiFe2O4 nanoparticles with improved magnetic properties. Mater. Sci. Eng., B 127, 81 2006CrossRefGoogle Scholar
45Sugimoto, T.Muramatsu, A.: Formation mechanism of monodispersed α-Fe2O3 particles in dilute FeCl3 solutions. J. Colloid Interface Sci. 184, 626 1996CrossRefGoogle ScholarPubMed
46Sugimoto, T.Yamaguchi, G.: Contact recrystallization of silver halide microcrystals in solution. J. Cryst. Growth 34, 253 1976CrossRefGoogle Scholar
47Sugimoto, T.: Fine Particles: Synthesis, Characterization, and Mechanism of Growth Marcel Dekker Inc., New York 2000 58–83Google Scholar
48Salazar-Álvarez, G., Olsson, R.T., Sort, J., Macedo, W.A.A., Ardisson, J.D., Baró, M.D., Gedde, U.W.Nogués, J.: Enhanced coercivity in Co-rich near-stoichiometric CoFe3−xO4+δ nanoparticles prepared in large batches. Chem. Mater. 19, 4957 2007CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis of Ni ferrite and Co ferrite rodlike particles by superposition of a constant magnetic field
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Synthesis of Ni ferrite and Co ferrite rodlike particles by superposition of a constant magnetic field
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Synthesis of Ni ferrite and Co ferrite rodlike particles by superposition of a constant magnetic field
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *