Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-03T17:18:09.490Z Has data issue: false hasContentIssue false

Synthesis of photoactive ZnSnP2 semiconductor nanowires

Published online by Cambridge University Press:  27 July 2015

Sudarat Lee
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
Eli Fahrenkrug
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
Stephen Maldonado*
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA; and Program in Applied Physics, Ann Arbor, Michigan 48109-1055, USA
*
a)Address all correspondence to this author. e-mail: smald@umich.edu
Get access

Abstract

Single-phase crystalline ZnSnP2 nanowires have been prepared via simple chemical vapor deposition method using powdered Zn and SnP3 as the precursors in a custom-built tube furnace reactor. The sublimed precursors were allowed to react with thermally evaporated Sn nanoparticles to yield ZnSnP2 nanowire films over areas of 40 mm2. The cumulative observations suggest that the Sn nanoparticles served both as the growth seed and main contributor of Sn. Prolonged growth time favored formation of Zn3P2 nanowires when the Sn supply was exhausted. For optimal growth conditions, surface and bulk elemental analyses showed homogenous elemental distribution of Zn, Sn, and P, with chemical composition close to 1:1:2 stoichiometry. Powder x-ray diffraction data and Raman scattering of the nanowire films along with single-nanowire analysis using high-resolution transmission electron microscopy indicated that the as-prepared ZnSnP2 nanowires possessed a sphalerite crystal structure, as opposed to the antisite defect-free chalcopyrite structure. Photoelectrochemical measurements in aqueous electrolyte showed that the as-prepared ZnSnP2 nanowires are capable of sustaining stable cathodic photoresponse under white light illumination. Overall, this study presented a benign and straightforward approach to prepare single-phase Zn-based phosphide nanowires suitable for energy conversion applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hu, S., Chi, C-Y., Fountaine, K.T., Yao, M., Atwater, H.A., Dapkus, P.D., Lewis, N.S., and Zhou, C.: Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes. Energy Environ. Sci. 6(6), 1879 (2013).Google Scholar
Sun, J., Liu, C., and Yang, P.: Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J. Am. Chem. Soc. 133, 19306 (2011).Google Scholar
Price, M.J. and Maldonado, S.: Macroporous n-GaP in nonaqueous regenerative photoelectrochemical cells. J. Phys. Chem. C 113(28), 11988 (2009).Google Scholar
Wallentin, J., Anttu, N., Asoli, D., Huffman, M., Aberg, I., Magnusson, M.H., Siefer, G., Fuss-Kailuweit, P., Dimroth, F., Witzigmann, B., Xu, H.Q., Samuelson, L., Deppert, K., and Borgstrom, M.T.: InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339(6123), 1057 (2013).CrossRefGoogle ScholarPubMed
Woodhouse, M., Goodrich, A., Margolis, R., James, T.L., Lokanc, M., and Eggert, R.: Supply-chain dynamics of tellurium, indium, and gallium within the context of PV manufacturing costs. IEEE J. Photovoltaics 3(2), 833 (2013).Google Scholar
Lewis, N.S. and Nocera, D.G.: Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103(43), 15729 (2006).Google Scholar
Collins, S.M., Hankett, J.M., Carim, A.I., and Maldonado, S.: Preparation of photoactive ZnGeP2 nanowire films. J. Mater. Chem. 22(14), 6613 (2012).Google Scholar
van Schilfgaarde, M., Coutts, T.J., Newman, N., and Peshek, T.: Thin film tandem photovoltaic cell from II-IV-V chalcopyrites. Appl. Phys. Lett. 96(14), 143503 (2010).Google Scholar
Yokoyama, T., Oba, F., Seko, A., Hayashi, H., Nose, Y., and Tanaka, I.: Theoretical photovoltaic conversion efficiencies of ZnSnP2, CdSnP2, and Zn1-xCdxSnP2 alloys. Appl. Phys. Express 6(6), 061201 (2013).Google Scholar
Gashimzade, F.M.: Band structure of AII-BIV-C2V-type semiconductor compounds having the chalcopyrite structure. Sov. Phys. Solid State 5(4), 875 (1963).Google Scholar
Shay, J.L. and Wernick, J.H.: Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Pergamon Press, Elmsford, NY, 1975).Google Scholar
St-Jean, P., Seryogin, G.A., and Francoeur, S.: Band gap of sphalerite and chalcopyrite phases of epitaxial ZnSnP2 . Appl. Phys. Lett. 96(23), 231913 (2010).Google Scholar
Davis, G.A. and Wolfe, C.M.: Liquid phase epitaxial growth of ZnSnP2 on GaAs. J. Electrochem. Soc. 130(6), 1408 (1983).CrossRefGoogle Scholar
Ryan, M.A., Peterson, M.W., Williamson, D.L., Frey, J.S., Maciel, G.E., and Parkinson, B.A.: Metal site disorder in zinc tin phosphide. J. Mater. Res. 2(4), 528 (1987).Google Scholar
Scanlon, D.O. and Walsh, A.: Bandgap engineering of ZnSnP2 for high-efficiency solar cells. Appl. Phys. Lett. 100(25), 251911 (2012).CrossRefGoogle Scholar
Borshchevskii, A.S. and Vysotina, M.G.: Certain characteristics of the phase diagram of Zn-Sn-P. Izv. Akad. Nauk SSSR, Neorg. Mater. 12(4), 615 (1976).Google Scholar
Mughal, S.A., Payne, A.J., and Ray, B.: Preparation and phase studies of the ternary semiconducting compounds ZnSnP2, ZnGeP2, ZnSiP2, CdGeP2, and CdSiP2 . J. Mater. Sci. 4, 895 (1969).CrossRefGoogle Scholar
Rubenstein, M. and Ure, J.R.W.: Preparation and characteristics of ZnSnP2 . J. Phys. Chem. Solids 29, 551 (1968).Google Scholar
Ajmera, P.K., Shin, H.Y., and Zamanian, B.: Vacuum growth of thin films of ZnSnP2 . Sol. Cells 21, 291 (1987).Google Scholar
Sansregret, J.: The growth of thin films of zinc tin phosphide. Mater. Res. Bull. 16, 607 (1981).Google Scholar
Seryogin, G.A., Nikishin, S.A., Temkin, H., Mintairov, A.M., Merz, J.L., and Holtz, M.: Order–disorder transition in epitaxial ZnSnP2 . Appl. Phys. Lett. 74(15), 2128 (1999).Google Scholar
Goel, S.C., Buhro, W.E., Adolphi, N.L., and Conradi, M.S.: Low-temperature organometallic synthesis of crystalline and galssy ternary semiconductors MIIMIVP2 where MII = Zn and Cd, and MIV = Ge and Sn. J. Organomet. Chem. 449, 9 (1993).Google Scholar
Vaipolin, A., Osmanov, E., and Prochukhan, V.: Modifications of A(II)-B(IV)-C2(V) compounds with the sphalerite structure. Izv. Akad. Nauk SSSR, Neorg. Mater. 8, 947 (1972).Google Scholar
Mintairov, A.M., Sadchikov, N.A., Sauncy, T., Holtz, M., Seryogin, G.A., Nikishin, S.A., and Temkin, H.: Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2 . Phys. Rev. B 59(23), 15197 (1999).CrossRefGoogle Scholar
Bettini, M.: Zone-centered phonons in ternary compounds of chalcopyrite structure. Phys. Status Solidi B 69, 201 (1975).Google Scholar
Zlatkin, L.B., Markov, J.F., Stekhanov, A.I., and Shur, M.S.: Lattice reflection and optical constants of ZnSnP2 crystals with chlcopyrite and sphalerite structure. Phys. Status Solidi B 32, 473 (1969).Google Scholar
Lazewski, J. and Parlinski, K.: Dynamical properties of pnictide ZnSnP2 from ab initio calculations. J. Alloys Compd. 328, 162 (2001).Google Scholar
Misiewicz, J.: Optical vibrations in the Zn3P2 lattice. J. Phys.: Condens. Matter 1, 9283 (1989).Google Scholar
Pangilinan, G., Sooryakumar, R., and Misiewicz, J.: Raman activity of Zn3P2 . Phys. Rev. B 44(6), 2582 (1991).Google Scholar
Binions, R., Blackman, C.S., Carmalt, C.J., O'Neill, S.A., Parkin, I.P., Molloy, K., and Apostilco, L.: Tin phosphide coatings from the atmospheric pressure chemical vapour deposition of SnX4 (X=Cl or Br) and PRxH3−x (R=cychex or phenyl). Polyhedron 21, 1943 (2002).Google Scholar
Francoeur, S., Seryogin, G.A., Nikishin, S.A., and Temkin, H.: X-ray diffraction study of chalcopyrite ordering in epitaxial ZnSnP2 grown on GaAs. Appl. Phys. Lett. 74(24), 3678 (1999).CrossRefGoogle Scholar
Vaipolin, A.A., Goryunova, N.A., Kleshchinskii, L.I., Loshakova, G.V., and Osmanov, E.O.: The structure and properties of the semiconducting compound ZnSnP2 . Phys. Status Solidi B 29, 435 (1968).Google Scholar
Francoeur, S., Seryogin, G.A., Nikishin, S.A., and Temkin, H.: Quantitative determination of the order parameter in epitaxial layers of ZnSnP2 . Appl. Phys. Lett. 76(15), 2017 (2000).Google Scholar
Jeong, S., McDowell, M.T., and Cui, Y.: Low-temperature self-catalytic growth of tin oxide nanocones over large areas. ACS Nano 5(7), 5800 (2011).Google Scholar
Schoenmakers, G.H., Waagenaar, R., and Kelly, J.J.: Methylviologen redox reactions at semiconductor single crystal electrodes. Ber. Bunsenges. Phys. Chem. 100(7), 1169 (1996).Google Scholar
Goryunova, N.A., Kesamanly, F.P., and Loshakova, G.V.: Electrical properties of ZnSnP2 crystals. Sov. Phys. Semicond. 1(7), 844 (1968).Google Scholar
Bae, I-T., Vasekar, P., VanHart, D., and Dhakal, T.: Low-temperature synthesis of Zn3P2 nanowire. J. Mater. Res. 26(12), 1464 (2011).Google Scholar
Brockway, L., Van Laer, M., Kang, Y., and Vaddiraju, S.: Large-scale synthesis and in situ functionalization of Zn3P2 and Zn4Sb3 nanowire powders. Phys. Chem. Chem. Phys. 15(17), 6260 (2013).Google Scholar
Kamimura, H., Gouveia, R.C., Dalmaschio, C.J., Leite, E.R., and Chiquito, A.J.: Synthesis and electrical characterization of Zn3P2 nanowires. Semicond. Sci. Technol. 29(1), 015001 (2014).CrossRefGoogle Scholar
Miyauchi, K., Minemura, T., Nakatani, K., Nakanishi, H., Sugiyama, M., and Shirakata, S.: Photoluminescence properties of ZnSnP2 single crystals. Phys. Status Solidi C 6(5), 1116 (2009).Google Scholar
Heben, M.J., Kumar, A., Zheng, C., and Lewis, N.S.: Efficient photovoltaic devices for InP semiconductor/liquid junctions. Nature 340, 621 (1989).CrossRefGoogle Scholar
Foley, J.M., Price, M.J., Feldblyum, J.I., and Maldonado, S.: Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion. Energy Environ. Sci. 5(1), 5203 (2012).Google Scholar
Supplementary material: File

Lee et al. supplementary material

Supplementary figures and tables

Download Lee et al. supplementary material(File)
File 6.7 MB