Hostname: page-component-5d59c44645-zlj4b Total loading time: 0 Render date: 2024-02-22T11:47:46.405Z Has data issue: false hasContentIssue false

Teflon AF/Ag nanocomposites with tailored optical properties

Published online by Cambridge University Press:  03 March 2011

H. Eilers*
Institute for Shock Physics, Washington State University, Spokane, Washington 99210
A. Biswas
Institute for Shock Physics, Washington State University, Spokane, Washington 99210
T.D. Pounds
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
M. Grant Norton
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
M. Elbahri
Chair for Multicomponent Materials, Faculty of Engineering, Christian Albrechts University, D-24143, Kiel, Germany
a) Address all correspondence to these authors. e-mail:
Get access


Teflon AF/Ag nanocomposites with various metal concentrations were fabricated by an evaporation process. Transmission electron microscopy examination showed that for low metal concentrations, the silver formed isolated individual nanoparticles. At higher metal concentrations, percolating metallic networks within the polymer matrix were formed. Optical absorption measurements showed a transition from individual plasmon absorption peaks for individual Ag nanoparticles to broadband optical absorption for the metallic networks. The absorption profile closely matches the solar radiation spectrum for an intermediate metal concentration of 45%. Thus, these novel polymer-metal nanocomposites have significant potential for photovoltaic applications.

Rapid Communications
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1Metal-Polymer Nanocomposites, edited by Nicolais, L. and Carotenuto, G. (Wiley Interscience, Hoboken, NJ, 2005).Google Scholar
2Heilmann, A.: Polymer Films with Embedded Metal Nanoparticles, Springer Series in Materials Science, Vol. 52 (Springer-Verlag, Berlin, Heidelberg, New York, 2003).Google Scholar
3Kreibig, U. and Vollmer, M.: Optical Properties of Metal Clusters, Springer Series in Materials Science, Vol. 25 (Springer-Verlag, Berlin, Heidelberg, New York, 1995).Google Scholar
4Shalaev, V.M.: Optical nonlinearities of fractal composites, in Optical Properties of Nanostructured Random Media, Topics in Applied Physics, Vol. 82, edited by Shalaev, V.M. (Springer-Verlag, Berlin, Heidelberg, Germany, 2002), pp. 93114.Google Scholar
5Schürmann, U., Hartung, W.A., Takele, H., Zaporojtchenko, V., and Faupel, F.: Controlled syntheses of Ag-PTFE nanocomposite thin films by co-sputtering from two magnetron sources. Nanotechnology 16, 1078 (2005).Google Scholar
6Takele, H., Schürmann, U., Greve, H., Paretkar, D., Zaporojtchenko, V., and Faupel, F.: Controlled growth of Au nanoparticles in co-evaporated metal/polymer composite films and their optical and electrical properties, Eur. Phys. J. Appl. Phys. 33, 83 (2006).Google Scholar
7Halas, N.: Playing with plasmons: Tuning the optical resonant properties of metallic nanoshells. MRS Bull. 30, 362 (2005).Google Scholar
8Biswas, A., Aktas, O.C., Schürmann, U., Saeed, U., Zaporojtchenko, V., Faupel, F., and Strunskus, T.: Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems. Appl. Phys. Lett. 84, 2655 (2004).Google Scholar
9Biswas, A., Aktas, O.C., Kanzow, J., Saeed, U., Strunskus, T., Zaporojtchenko, V., and Faupel, F.: Polymer–metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition. Mater. Lett. 58, 1530 (2004).Google Scholar
10Dirix, Y., Bastiaansen, C., Caseri, W., and Smith, P.: Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters. Adv. Mater. 11, 223 (1999).Google Scholar
11Quinten, M.: The color of finely dispersed nanoparticles. Appl. Phys. B: Lasers Opt. 73, 317 (2001).Google Scholar
12Stegeman, G.I. and Wright, E.M.: All-optical waveguide switching. Opt. Quantum Electron. 22, 95 (1990).Google Scholar
13Bockstaller, M., Kolb, R., and Thomas, E.L.: Metallodielectric photonic crystals based on diblock copolymers. Adv. Mater. 13, 1783 (2001).Google Scholar
14Bockstaller, M.R. and Thomas, E.L.: Optical properties of polymer-based photonic nanocomposite materials. J. Phys. Chem. B 107, 10017 (2003).Google Scholar
15Ward, A.J., Pendry, J.B., and Steward, W.J.: Photonic dispersion surfaces. J. Phys.: Condens. Matter 7, 2217 (1995).Google Scholar
16Convertino, A., Capobianchi, A., Valentini, A., and Cirillo, E.N.M.: A new approach to organic solvent detection: High-reflectivity bragg reflectors based on a gold nanoparticle/teflon-like composite material. Adv. Mater. 15, 1103 (2003).Google Scholar
17Biswas, A., Eilers, H., Hidden, F., Actas, O.C., and Kiran, C.V.S.: Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF matrix. Appl. Phys. Lett. 88, 013103 (2006).Google Scholar
18Westphalen, M., Kreibig, U., Rostalski, J., Lüth, H., and Meissner, D.: Metal cluster enhanced organic solar cells. Sol. Energy Mater. Sol. Cells 61, 97 (2000).Google Scholar
19Rand, B.P., Peumans, P., and Forrest, S.R.: Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519 (2004).Google Scholar
20Granqvist, C.G.: Solar energy materials. Adv. Mater. 15, 1789 (2003).Google Scholar
21Wu, J., Walukiewicz, W., Yu, K.M., Shan, W., III, J.W. Ager, Haller, E.E., Lu, H., Schaff, W.J., Metzger, W.K., and Kurtz, S.: Superior radiation resistance of In1−x Gax N alloys: Full-solar-spectrum photovoltaic material system. J. Appl. Phys. 94, 6477 (2003).Google Scholar
22Genov, D.A., Sarychev, A.K., and Shalaev, V.M.: Metal-dielectric composite filters with controlled spectral windows of transparency. J. Nonlin. Opt. Phys. Mater. 12, 419 (2003).Google Scholar
23Kiesow, A., Morris, J.E., Radehaus, C., and Heilmann, A.: Switching behavior of plasma polymer films containing silver nanoparticles. J. Appl. Phys. 94, 6988 (2003).Google Scholar