Hostname: page-component-5d59c44645-zlj4b Total loading time: 0 Render date: 2024-03-01T16:29:47.006Z Has data issue: false hasContentIssue false

Thermodynamic stability of binary oxides in contact with silicon

Published online by Cambridge University Press:  31 January 2011

K. J. Hubbard
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802–5005.
D. G. Schlom
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802–5005.
Get access

Abstract

Using tabulated thermodynamic data, a comprehensive investigation of the thermo-dynamic stability of binary oxides in contact with silicon at 1000 K was conducted. Reactions between silicon and each binary oxide at 1000 K, including those involving ternary phases, were considered. Sufficient data exist to conclude that all binary oxides except the following are thermodynamically unstable in contact with silicon at 1000 K: Li2O, most of the alkaline earth oxides (BeO, MgO, CaO, and SrO), the column IIIB oxides (Sc2O3, Y2O3, and Re2O3, where Re is a rare earth), ThO2, UO2, ZrO2, HfO2, and Al2O3. Of these remaining oxides, sufficient data exist to conclude that BeO, MgO, and ZrO2 are thermodynamically stable in contact with silicon at 1000 K. Our results are consistent with reported investigations of silicon/binary oxide interfaces and identify candidate materials for future investigations.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fenner, D. B., Viano, A. M., Fork, D. K., Connell, G. A. N., Boyce, J.B., Ponce, F. A., and Tramontana, J.C., J. Appl. Phys. 69, 2176 (1991).Google Scholar
2.Ziegler, C., Baudenbacher, F., Karl, H., Kinder, H., and Göpel, W., Fresenius J. Anal. Chem. 341, 308 (1991).Google Scholar
3.Shichi, Y., Tanimoto, S., Goto, T., Kuroiwa, K., and Tarui, Y., Jpn. J. Appl. Phys. 33, 5172 (1994).Google Scholar
4.Scheib, M., Goebel, H., Hofmann, L., Lengeler, B., Oechsner, H., and Zorn, G., Thin Solid Films 174, 5 (1989).Google Scholar
5.Panitz, J. K. G. and Hu, C. C., J. Vac. Sci. Technol. 16, 315 (1979).Google Scholar
6.Dharmadhikari, V. S. and Grannemann, W. W., J. Vac. Sci. Technol. A 1, 483 (1983).Google Scholar
7.Mogro-Campero, A., Supercond. Sci. Technol. 3, 155 (1990).Google Scholar
8.Fork, D. K., in Pulsed Laser Deposition of Thin Films, edited by Chrisey, D. B. and Hubler, G. K. (Wiley, New York, 1994), p. 393.Google Scholar
9.Tarsa, E. J., McCormick, K. L., and Speck, J. S., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Philips, J.M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 73.Google Scholar
10.Phillips, J. M., MRS Bulletin 20, 35 (April 1995);Google Scholar
Phillips, J.M., to be published in Processing and Properties of High Tc Superconductors, Volume 2: Thin Films, edited by Jin, S. and Christen, D. K. (World Scientific).Google Scholar
11.Gurvitch, M. and Fiory, A. T., Appl. Phys. Lett. 51, 1027 (1987).Google Scholar
12.Jia, Q. X., Jiao, K. L., and Anderson, W. A., J. Appl. Phys. 70, 3364 (1991).Google Scholar
13.Beyers, R., J. Appl. Phys. 56, 147 (1984).Google Scholar
14.Beyers, R., Sinclair, R., and Thomas, M. E., J. Vac. Sci. Technol. B 2, 781 (1984).Google Scholar
15.Beyers, R., Kim, K.B., and Sinclair, R., J. Appl. Phys. 61, 2195 (1987).Google Scholar
16.Beyers, R., Ph.D. Thesis, Stanford University, 1989, pp. 3876.Google Scholar
17.Hubbard, K.J., B.S. Thesis, The Pennsylvania State University, 1993.Google Scholar
18. Note that is the M–Si–O system contains more than one metal-silicide phase, there will be several phase diagram possibilities within the “no phase dominant” type; if the system contains no metal-silicide phases, there will not be a “no phase dominant” type.Google Scholar
19. Of all the silicides, only the most silicon-rich (MSi z) lies on a tie-line between MSi z and SiO2 in all of the possible no phase dominant phase diagrams, making the preference of this tie-line or the one between silicon and MO x, Eq. (2), the critical test of metal oxide dominant versus no phase dominant.Google Scholar
20. Of all the silicides, only the most silicon-rich (MSi z) lies on a tie-line between MSi z and MO x in all of the possible MO x dominant type (see Fig. 3) phase diagrams, making the preference of this tie-line or the one between silicon and MOw, Eq. (4), the critical test of MO x and MOw dominant versus MO x dominant.Google Scholar
21. Note that if the M–Si–O system contains more than one metal-silicide phase, there will be several phase diagram possibilities within the MO x dominant type (see Fig. 3); if the system contains no metal-silicide phases, there will not be a MO x dominant type.Google Scholar
22. These are the potential compatibility triangles that would accompany a tie-line between silicon and MO x. The ternary phases lying on these compatibility triangles are the only ones relevant to the existence of the tie-line being tested by Eqs. (5), (6), and (7).Google Scholar
23. If a tie-line between silicon and MO x does not exist, a tie-line from the relevant MSi xOy phase(s) that crosses the silicon—MOx tie-line position must exist. Such a tie-line must connect with either M or MSi z since a MSi z—SiO2 tie-line is known not to exist [in order to reach Eq. (5), ΔG had to be positive for Eq. (2)].Google Scholar
24.Barin, I. and Knacke, O., Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973).Google Scholar
25.Barin, I., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances, Supplement (Springer-Verlag, Berlin, 1977).Google Scholar
26.Thermodynamic Properties of Elements and Oxides (United States Bureau of Mines Bulletin 672, U.S. Government Printing Office, Washington, DC, 1982).Google Scholar
27.Lukashenko, G. M., Polotskaya, R.I., and Sidorko, V. R., J. Alloys Compd. 179, 299 (1992).Google Scholar
28. See, for example, Dickerson, R.E., Molecular Thermodynamics (Benjamin/Cummings, Menlo Park, 1969).Google Scholar
29.Powder Diffraction File: Inorganic Phases (JCPDS International Centre for Diffraction Data, Swarthmore, PA, 1992).Google Scholar
30.CRC Handbook of Chemistry and Physics, 71st ed. (CRC Press, Cleveland, OH, 1990/1991).Google Scholar
31.The Oxide Handbook, 2nd ed., edited by Samsonov, G. V. (IFI/Plenum, New York, 1982).Google Scholar
32.Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 7b, edited by Hellwege, K-H. (Springer-Verlag, Berlin, 1975), p. 456.Google Scholar
33.Kramers, W. J. and Smith, J. R., Trans. Brit. Ceram. Soc. 56, 590 (1957).Google Scholar
34.Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 27g, edited by Madelung, O. (Springer-Verlag, Berlin, 1992), p. 4.Google Scholar
35.Brauer, G., Reuther, H., Walz, H., and Zapp, K. H., Anorg, Z.. Allg. Chem. 369, 144 (1969).Google Scholar
36.Natta, G. and Strada, M., Gazzetta Chimica Italiana 58, 419 (1928).Google Scholar
37.Muller, O. and Roy, R., J. Less-Common Met. 16, 129 (1968).Google Scholar
38.Ourmazd, A., Taylor, D.W., Rentschler, J.A., and Bevk, J., Phys. Rev. Lett. 59, 213 (1987).Google Scholar
39.Givargizov, E. I., Oriented Crystallization on Amorphous Substrates (Plenum Press, New York, 1991).Google Scholar
40.Reade, R. P., Berdahl, P., Russo, R. E., and Schaper, L. W., Appl. Phys. Lett. 66, 2001 (1995).Google Scholar
41.Goldschmidt, H. J., Interstitial Alloys (Plenum Press, New York, 1967), p. 296.Google Scholar
42.Mori, H. and Ishiwara, H., Jpn. J. Appl. Phys. 30, L1415 (1991);Google Scholar
Ishiwara, H., Mori, H., Jyokyu, K., and Ueno, S., in Silicon Molecular Beam Epitaxy, edited by Bean, J.C., Iyer, S.S., and Wang, K. L. (Mater. Res. Soc. Symp. Proc. 220, Pittsburgh, PA, 1991), p. 595;Google Scholar
Ishiwara, H., Tsuji, N., Mori, H., and Nohira, H., Appl. Phys. Lett. 61, 1459 (1992).Google Scholar
43.McKee, R.A., Walker, F.J., Conner, J.R., Specht, E.D., and Zelmon, D.E., Appl. Phys. Lett. 59, 782 (1991);Google Scholar
McKee, R.A., Walker, F.J., Conner, J.R., and Raj, R., Appl. Phys. Lett. 63, 2818 (1993).Google Scholar
44.Behner, H., Wecker, J., Matthée, Th., and Samwer, K., Surf. Interface Anal. 18, 685 (1992).Google Scholar
45.Matthée, Th., Wecker, J., Behner, H., Friedl, G., Eibl, O., and Samwer, K., Appl. Phys. Lett. 61, 1240 (1992).Google Scholar
46.Bardal, A., Eibl, O., Matthée, Th., Friedl, G., and Wecker, J., J. Mater. Res. 8, 2112 (1993).Google Scholar
47.Krasnosvobodtsev, S.I. and Pechen, E.V., Physica C 185–189, 2097 (1991).Google Scholar
48.Behner, H., Wecker, J., and Heines, B., in High Tc Superconductor Thin Films, edited by Correra, L. (North-Holland, Amsterdam, 1992), p. 623.Google Scholar
49.Pechen, E.V., Schoenberger, R., Brunner, B., Ritzinger, S., Renk, K.F., Sidorov, M. V., and Oktyabrsky, S. R., J. Appl. Phys. 74, 3614 (1993).Google Scholar
50.Filby, J. D. and Nielsen, S. Jr, J. Appl. Phys. 18, 1357 (1967).Google Scholar
51.Manasevit, H. M., J. Cryst. Growth 22, 125 (1974).Google Scholar
52. The growth of HfO2 layers on silicon has been reported by de Reus, R., Saris, F.W., van der Kolk, G. J., Witmer, C., Dam, B., Blank, D. H. A., Adelerhof, D. J., and Flokstra, J., Mater. Sci. Engr. B 7, 135 (1990). From RBS analyses, these researchers report HfO2 to be inert in contact with silicon at temperatures up to 1073 K. However, as in many reports of the deposition of oxides on silicon, no mention is given in this work of the method used to remove the native oxide from the (100) Si wafer prior to growth. It is thus likely that the stable interfaces studied were actually HfO2/SiO2/Si, which does not indicate whether the HfO2/Si interface is stable or unstable. It is for this same reason that other reports of the growth of binary oxides on silicon, in which the removal of the native oxide prior to growth is unclear, are not considered in our comparisons.Google Scholar
53.Pretorius, R., Harris, J.M., and Nicolet, M-A., Solid-State Electron. 21, 667 (1978).Google Scholar
54.Brown, D. M., Engeler, W. E., Garfinkel, M., and Gray, P. V., Solid-State Electron. 11, 1105 (1968).Google Scholar
55.Murarka, S. P., J. Vac. Sci. Technol. 17, 775 (1980);Google Scholar
Murarka, S. P., Silicides for VLSI Applications (Academic Press, New York, 1983), pp. 138140.Google Scholar
56.Spear, K. E., Gilles, P.W., and Schäfer, H., J. Less-Common Met. 14, 69 (1968).Google Scholar
57.Murarka, S. P., Fraser, D. B., Lindenberger, W. S., and Sinha, A. K., J. Appl. Phys. 51, 3241 (1980).Google Scholar
58.Manasevit, H. M., Forbes, D. H., and Cadoff, I. B., Trans. Metall. Soc. AIME 236, 275 (1966).Google Scholar
59.Fork, D. K., Ponce, F. A., Tramontana, J.C., and Geballe, T.H., Appl. Phys. Lett. 58, 2294 (1991).Google Scholar
60.Tiwari, P., Sharan, S., and Narayan, J., J. Appl. Phys. 69, 8358 (1991).Google Scholar
61.Rou, S.H., Graettinger, T.M., Chow, A. F., Soble, C.N. II, Lichtenwalner, D. J., Auciello, O., and Kingon, A. I., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 81.Google Scholar
62.Soerensen, G. and Gygax, S., Physica B. 169, 673 (1991).Google Scholar
63.Kado, Y. and Arita, Y., J. Appl. Phys. 61, 2398 (1987);Google Scholar
Kado, Y. and Arita, Y., in Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials (Tokyo, 1986), p. 45.Google Scholar
64.Kado, Y. and Arita, Y., in Extended Abstracts of the 20th (1988 International) Conference on Solid State Devices and Materials (Tokyo, 1988), p. 181.Google Scholar
65.Fukumoto, H., Imura, T., and Osaka, Y., Appl. Phys. Lett. 55, 360 (1989).Google Scholar
66.Fukumoto, H., Yamamoto, M., and Osaka, Y., Proc. Electrochem. Soc. 90, 239 (1990).Google Scholar
67.Harada, K., Nakanishi, H., Itozaki, H., and Yazu, S., Jpn. J. Appl. Phys. 30, 934 (1991).Google Scholar
68.Yamamoto, M., Fukumoto, H., and Osaka, Y., in Heteroepitaxy of Dissimilar Materials, edited by Farrow, R. F. C., Harbison, J.P., Peercy, P. S., and Zangwill, A. (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 35.Google Scholar
69.Inoue, T., Yamamoto, Y., Koyama, S., Suzuki, S., and Ueda, Y., Appl. Phys. Lett. 56, 1332 (1990);Google Scholar
Inoue, T., Osonoe, M., Tohda, H., Hiramatsu, M., Yamamoto, Y., Yamanaka, A., and Nakayama, T., J. Appl. Phys. 69, 8313 (1991);Google Scholar
Luo, L., Wu, X. D., Dye, R. C., Muenchausen, R. E., Foltyn, S. R., Coulter, Y., Maggiore, C. J., and Inoue, T., Appl. Phys. Lett. 59, 2043 (1991);Google Scholar
Inoue, T., Ohsuna, T., Luo, L., Wu, X. D., Maggiore, C. J., Yamamoto, Y., Sakurai, Y., and Chang, J. H., Appl. Phys. Lett. 59, 3604 (1991);Google Scholar
Inoue, T., Ohsuna, T., Yamada, Y., Wakamatsu, K., Itoh, Y., Nozawa, T., Sasaki, E., Yamamoto, Y., and Sakurai, Y., Jpn. J. Appl. Phys. 31, L1736 (1992);Google Scholar
Yamamoto, Y., Satoh, M., Sakurai, Y., Nakajima, S., Inoue, T., and Ohsuna, T., Jpn. J. Appl. Phys. 32, L620 (1993).Google Scholar
70.Yoshimoto, M., Nagata, H., Tsukahara, T., and Koinuma, H., Jpn. J. Appl. Phys. 29, L1199 (1990);Google Scholar
Nagata, H., Yoshimoto, M., Koinuma, H., Min, E., and Haga, N., J. Cryst. Growth 123, 1 (1992);Google Scholar
Yoshimoto, M., Shimozono, K., Maeda, T., Ohnishi, T., Kumagai, M., Chikyow, T., Ishiyama, O., Shinohara, M., and Koinuma, H., Jpn. J. Appl. Phys. 34, L688 (1995).Google Scholar
71.Nagata, H., Yoshimoto, M., Tsukahara, T., Gonda, S., and Koinuma, H., in Evolution of Thin-Film and Surface Microstructure, edited by Thompson, C. V., Tsao, J.Y., and Srolovitz, D. J. (Mater. Res. Soc. Symp. Proc. 202, Pittsburgh, PA, 1991), p. 445.Google Scholar
72.Koinuma, H., Nagata, H., Tsukahara, T., Gonda, S., and Yoshimoto, M., Appl. Phys. Lett. 58, 2027 (1991).Google Scholar
73.Chikyow, T., Bedair, S. M., Tye, L., and El-Masry, N. A., Appl. Phys. Lett. 65, 1030 (1994);Google Scholar
Tye, L., Chikyow, T., El-Masry, N. A., and Bedair, S. M., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 107;Google Scholar
Tye, L., El-Masry, N.A., Chikyow, T., McLarty, P., and Bedair, S. M., Appl. Phys. Lett. 65, 3081 (1994).Google Scholar
74. The approximate error stated is calculated from the “B” quality data for SiO2, the “B-C” quality data for CeO2, and the “C” quality data for CeSi2 given in Ref. 24 and 25.Google Scholar
75.Inoue, T., Ohsuna, T., Obara, Y., Yamamoto, Y., Satoh, M., and Sakurai, Y., Jpn. J. Appl. Phys. 32, 1765 (1993).Google Scholar
76.Fork, D. K., Fenner, D. B., and Geballe, T. H., J. Appl. Phys. 68, 4316 (1990).Google Scholar
77.Tarsa, E. J., Speck, J. S., and Robinson, McD., Appl. Phys. Lett. 63, 539 (1993).Google Scholar
78.Chu, T. L., Francombe, M. H., Gruber, G. A., Oberly, J.J., and Tallman, R. L., Deposition of Silicon on Insulating Substrates, Report No. AFCRL-65–574 (Westinghouse Research Laboratories, Pittsburgh, PA, 1965). See especially pp. 3134 and pp. 41–44. (NTIS ID No. AD–619 992).Google Scholar
79.Morita, M., Fukumoto, H., Imura, T., Osaka, Y., Ichihara, M., J. Appl. Phys. 58 2407 (1985);Google Scholar
Osaka, Y., Imura, T., Nishibayashi, Y., Nishiyama, F., J. Appl. Phys. 63 581 (1988).Google Scholar
80.Myoren, H., Nishiyama, Y., Fukumoto, H., Nasu, H., and Osaka, Y., Jpn. J. Appl. Phys. 28, 351 (1989).Google Scholar
81.Lubig, A., Buchal, Ch., Schubert, J., Copetti, C., Guggi, D., Jia, C. L., and Stritzker, B., J. Appl. Phys. 71, 5560 (1992);Google Scholar
Lubig, A., Buchal, Ch., Guggi, D., Jia, C. L., and Stritzker, B., Thin Solid Films 217, 125 (1992)Google Scholar
82.Golecki, I., Manasevit, H. M., Moudy, L. A., Yang, J. J., and Mee, J. E., Appl. Phys. Lett. 42, 501 (1983);Google Scholar
Manasevit, H. M., Golecki, I., Moudy, L. A., Yang, J. J., and Mee, J. E., J. Electrochem. Soc. 130, 1752 (1983);Google Scholar
Lin, A. L., and Golecki, I., J. Electrochem. Soc. 132, 239 (1985).Google Scholar
83.Legagneux, P., Garry, G., Dieumegard, D., Schwebel, C., Pellet, C., Gautherin, G., and Siejka, J., Appl. Phys. Lett. 53, 1506 (1988).Google Scholar
84.Fukumoto, H., Imura, T., and Osaka, Y., Jpn. J. Appl. Phys. 27, L1404 (1988);Google Scholar
Fukumoto, H., Yamamoto, M., Osaka, Y., and Nishiyama, F., J. Appl. Phys. 67, 2447 (1990);Google Scholar
Fukumoto, H., Yamamoto, M., and Osaka, Y., J. Appl. Phys. 69, 8130 (1991).Google Scholar
85.Fork, D. K., Fenner, D. B., Connell, G. A. N., Phillips, J. M., and Geballe, T. H., Appl. Phys. Lett. 57, 1137 (1990);Google Scholar
Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connell, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57, 1161 (1990);Google Scholar
Fork, D. K., Ponce, F. A., Tramontana, J. C., Newman, N., Phillips, J. M., and Geballe, T. H., Appl. Phys. Lett. 58, 2432 (1991).Google Scholar
86.Pursseit, W., Corsépius, S., Zwerger, M., Berberich, P., Kinder, H., Eibl, O., Jaekel, C., Breuer, U., and Kurz, H., Physica C 201, 249 (1992).Google Scholar
87.Murarka, S. P. and Chang, C. C., Appl. Phys. Lett. 37, 639 (1980).Google Scholar
88.Green, M.L., Gross, M.E., Papa, L.E., Schnoes, K.J., and Brasen, D., J. Electrochem. Soc. 132, 2677 (1985).Google Scholar
89.Jia, Q. X. and Anderson, W. A., Appl. Phys. Lett. 57, 304 (1990).Google Scholar
90.Kolawa, E., So, F. C. T., Pan, E. T-S., and Nicolet, M-A., Appl. Phys. Lett. 50, 854 (1987).Google Scholar
91.Krusin-Elbaum, L., Wittmer, M., and Yee, D. S., Appl. Phys. Lett. 50, 1879 (1987).Google Scholar
92.Nieh, C. W., Kolawa, E., So, F. C. T., and Nicolet, M-A., Mater. Lett. 6, 177 (1988).Google Scholar
93.Charai, A., Hörnström, S. E., Thomas, O., Fryer, P. M., and Harper, J. M. E., J. Vac. Sci. Technol. A 7, 784 (1989).Google Scholar
94.Nakamura, T., Nakao, Y., Kamisawa, A., and Takasu, H., Appl. Phys. Lett. 65, 1522 (1994);Google Scholar
Nakamura, T., Nakao, Y., Kami-sawa, A., and Takasu, H., Jpn. J. Appl. Phys. 33, 5207 (1994).Google Scholar
95.Manasevit, H. M. and Simpson, W. J., J. Appl. Phys. 35, 1349 (1964);Google Scholar
Manasevit, H. M., Miller, A., Morritz, F. L., and Nolder, R., Trans. Metall. Soc. AIME 233, 540 (1965).Google Scholar
96.Ponce, F. A., Appl. Phys. Lett. 41, 371 (1982).Google Scholar
97.Ishida, M., Katakabe, I., Nakamura, T., and Ohtake, N., Appl. Phys. Lett. 52, 1326 (1988);Google Scholar
Sawada, K., Ishida, M., Nakamura, T., and Ohtake, N., Appl. Phys. Lett. 52, 1672 (1988);Google Scholar
Sawada, K., Ishida, M., Nakamura, T., and Suzaki, T., J. Cryst. Growth 95, 494 (1989).Google Scholar
98.Iizuka, H., Yokoo, K., and Ono, S., Appl. Phys. Lett. 61, 2978 (1992).Google Scholar
99.Ishida, M., Sawada, K., Yamaguchi, S., Nakamura, T., and Suzaki, T., Appl. Phys. Lett. 55, 556 (1989);Google Scholar
Ishida, M., Yamaguchi, S., Masa, Y., Nakamura, T., and Hikita, Y., J. Appl. Phys. 69, 8408 (1991).Google Scholar
100.Grube, G., Schneider, A., Esch, U., and Flad, M., Anorg, Z.. Chem. 260, 120 (1949).Google Scholar
101.Kolawa, E., Garland, C., Tran, L., Nieh, C. W., Molarius, J. M., Flick, W., Nicolet, M-A., and Wei, J., Appl. Phys. Lett. 53, 2644 (1988).Google Scholar
102.Zeng, Y., Zhang, Z., Luo, W., Yang, N., Cai, Y., Hua, Z., and Shen, X., Thin Solid Films 214, 235 (1992);Google Scholar
Zhang, Z., Zeng, Y., Lou, W., Cai, Y., Sun, Y., Hua, Z-Y., and Shen, X., Vacuum 43, 1033 (1992).Google Scholar
103.Kolawa, E., Nieh, C. W., Molarius, J. M., Tran, L., Garland, C., Flick, W., Nicolet, M-A., So, F. C. T., and Wei, J.C. S., Thin Solid Films 166, 15 (1988).Google Scholar
104.Pennebaker, W. B., IBM J. Res. Develop. 13, 686 (Nov. 1969).Google Scholar
105.Matsubara, S., Sakuma, T., Yamamichi, S., Yamaguchi, H., and Miyasaka, Y., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 243;Google Scholar
Sakuma, T., Yamamichi, S., Matsubara, S., Yamaguchi, H., and Miyasaka, Y., Appl. Phys. Lett. 57, 2431 (1990);Google Scholar
Yamaguchi, H., Matsubara, S., and Miyasaka, Y., Jpn. J. Appl. Phys. 30, 2197 (1991).Google Scholar
106.Nagata, H., Tsukahara, T., Gonda, S., Yoshimoto, M., and Koinuma, H., Jpn. J. Appl. Phys. 30, L1136 (1991).Google Scholar
107.Ishiwara, H. and Azuma, K., in Heteroepitaxy on Silicon; Fundamentals, Structure, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 369.Google Scholar
108.Mori, H., and Ishiwara, H., Jpn. J. Appl. Phys. 30, L1415 (1991);Google Scholar
Ishiwara, H., Mori, H., Jyokyu, K., and Ueno, S., in Silicon Molecular Beam Epitaxy, edited by Bean, J.C., Iyer, S.S., and Wang, K. L. (Mater. Res. Soc. Symp. Proc. 220, Pittsburgh, PA, 1991), p. 595.Google Scholar
109. Since the free energy of the ternary or higher, multicomponent oxide must be lower than its binary constituents in order for it to form, and the binary constituents selected are individually compatible with silicon, the only potential reactions with silicon (i.e., where ΔG < 0) involve ternary or higher, multicomponent products (e.g., MM′xOz, MM′xSiy, or MM′xSiyOz phases). Although this greatly reduces the number of reactions that need to be tested to establish thermodynamic stability, thermodynamic data for these relevant multicomponent materials are often lacking.Google Scholar
110.Kado, Y. and Arita, Y., in Extended Abstracts of the 21st Conference on Solid State Devices and Materials (Tokyo, 1989), p. 45.Google Scholar
111.Manasevit, H. M. and Forbes, D. H., J. Appl. Phys. 37, 734 (1966).Google Scholar
112.Seiter, H. and Zaminer, Ch., Z. Angew Phys. 20, 158 (1965).Google Scholar
113.Ihara, M., Arimoto, Y., Jifuku, M., Kimura, T., Kodama, S., Yamawaki, H., and Yamaoka, T., J. Electrochem. Soc. 129, 2569 (1982);Google Scholar
Ihara, M., Microelectron. Eng. 1, 161 (1983).Google Scholar