Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T14:30:24.029Z Has data issue: false hasContentIssue false

Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high entropy alloys

Published online by Cambridge University Press:  18 June 2018

Daniel Gaertner*
Affiliation:
Institute of Materials Physics, University of Münster, Münster 48149, Germany
Josua Kottke
Affiliation:
Institute of Materials Physics, University of Münster, Münster 48149, Germany
Gerhard Wilde
Affiliation:
Institute of Materials Physics, University of Münster, Münster 48149, Germany
Sergiy V. Divinski*
Affiliation:
Institute of Materials Physics, University of Münster, Münster 48149, Germany
Yury Chumlyakov
Affiliation:
Department of Physics of Metals, Tomsk State University, Tomsk 634050, Russia
*
a)Address all correspondence to these authors. e-mail: daniel.gaertner@wwu.de
b)e-mail: divin@wwu.de
Get access

Abstract

High entropy alloys are multicomponent alloys, which consist of five or more elements in equiatomic or nearly equiatomic concentrations. These materials are hypothesized to show significantly decreased self-diffusivities. For the first time, diffusion of all constituent elements in equiatomic CoCrFeNi and CoCrFeMnNi single crystals and additionally solute diffusion of Mn in the quaternary alloy is investigated using the radiotracer technique, thereby the tracer diffusion coefficients of 57Co, 51Cr, 59Fe, 54Mn, and 63Ni are determined at a temperature of 1373 K. The components are characterized by significantly different diffusion rates, with Mn being the fastest element and Ni and Co being the slowest ones. Furthermore, solute diffusion of Cu in the CoCrFeNi single crystal is investigated in the temperature range of 973–1173 K using the 64Cu isotope. In the quaternary alloy, Cu is found to be a fast diffuser at the moderate temperatures below 1273 K and its diffusion rate follows the Arrhenius law with an activation enthalpy of about 149 kJ/mol.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Murty, B.S., Yeh, J.W., and Ranganathan, S.: High Entropy Alloys (Elsevier, London, 2014).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater 6, 299303 (2004).CrossRefGoogle Scholar
Zhang, F., Zhang, C., Chen, S.K., Zhu, J., Cao, W.S., and Kattner, U.R.: An understanding of high entropy alloys from phase diagram calculations. Calphad 45, 110 (2014).CrossRefGoogle Scholar
Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater 100, 9097 (2015).CrossRefGoogle Scholar
Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater 96, 258268 (2015).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Pradeep, K.G., Kubenová, M., Raabe, D., Eggeler, G., and George, E.P.: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater 112, 4052 (2016).CrossRefGoogle Scholar
Guo, N.N., Wang, L., Luo, L.S., Li, X.Z., Chen, R.R., Su, Y.Q., Guo, J.J., and Fu, H.Z.: Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory highentropy alloy. Mater. Sci. Eng., A 651, 698707 (2016).CrossRefGoogle Scholar
Chen, H., Kauffmann, A., Gorr, B., Schliephake, D., Seemüller, C., Wagner, J.N., Christ, H-J., and Heilmaier, M.: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb–Mo–Cr–Ti–Al. J. Alloys Compd 661, 206215 (2016).CrossRefGoogle Scholar
Lee, D.H., Seok, M.Y., Zhai, Y., Choi, I.C., He, J., Lu, Z., Suh, J.Y., Ramamurty, U., Kawasaki, M., Langdon, T.G., and Jang, J.I.: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater 109, 314322 (2016).CrossRefGoogle Scholar
Zhang, L., Yu, P., Cheng, H., Zhang, H., Diao, H., Shi, Y., Chen, B., Chen, P., Feng, R., Bai, J., Jing, Q., Ma, M., Liaw, P.K., Li, G., and Liu, R.: Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 47, 15 (2016).CrossRefGoogle Scholar
Ma, Y., Feng, Y.H., Debela, T.T., Peng, G.J., and Zhang, T.H.: Nanoindentation study on the creep characteristics of high-entropy alloy films: Fcc versus bcc structures. Int. J. Refract. Met. Hard Mater. 54, 395400 (2016).CrossRefGoogle Scholar
Cao, T., Shang, J., Zhao, J., Cheng, C., Wang, R., and Wang, H.: The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys. Mater. Lett. 164, 344347 (2016).CrossRefGoogle Scholar
Kai, W., Li, C.C., Cheng, F.P., Chu, K.P., Huang, R.T., Tsay, L.W., and Kai, J.J.: The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950 °C in various oxygencontaining atmospheres. Corros. Sci. 108, 209214 (2016).CrossRefGoogle Scholar
Laplanche, G., Volkert, U.F., Eggeler, G., and George, E.P.: Oxidation behavior of the CrMnFeCoNi high-entropy alloy. Oxid. Met 85, 629645 (2016).CrossRefGoogle Scholar
Holcomb, G.R., Tylczak, J., and Carney, C.: Oxidation of CoCrFeMnNi high entropy alloys. JOM 67, 23262339 (2015).CrossRefGoogle Scholar
Shaginyan, R.A., Krapivka, N.A., Firstov, S.A., Danilenko, N.I., and Serdyuk, I.V.: Superhard vacuum coatings based on high-entropy alloys. Powder Metall. Met. Ceram. 54, 725730 (2016).Google Scholar
Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 120 (2016).CrossRefGoogle Scholar
Miracle, D.B.: High-entropy alloys: A current evaluation of founding ideas and core effects and exploring “nonlinear alloys”. JOM 69, 21302136 (2017).CrossRefGoogle Scholar
Praveen, S., Basu, J., Kashyap, S., and Kottada, R.S.: Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Compd 662, 361367 (2016).CrossRefGoogle Scholar
Tsai, K.Y., Tsai, M.H., and Yeh, J.W.: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater 61, 48874897 (2013).CrossRefGoogle Scholar
Kulkarni, K. and Chauhan, G.P.S.: Investigations of quaternary interdiffusion in a constituent system of high entropy alloys. AIP Adv. 5, 097162 (2015).CrossRefGoogle Scholar
Dabrowa, J., Kucza, W., Cieslak, G., Kulik, T., Danielewski, M., and Yeh, J.W.: Interdiffusion in the fcc-structured Al–Co–Cr–Fe–Ni high entropy alloys: Experimental studies and numerical simulations. J. Alloys Compd 674, 455462 (2016).CrossRefGoogle Scholar
Vaidya, M., Trubel, S., Murty, B.S., Wilde, G., and Divinski, S.V.: Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 688, 9941001 (2016).CrossRefGoogle Scholar
Vaidya, M., Pradeep, K.G., Murty, B.S., Wilde, G., and Divinski, S.V.: Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Scientific Reports 7, 12273 (2017).CrossRefGoogle ScholarPubMed
Vaidya, M., Pradeep, K.G., Murty, B.S., Wilde, G., and Divinski, S.V.: Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater 146, 211224 (2018).CrossRefGoogle Scholar
Paul, A.: A pseudobinary approach to study interdiffusion and the Kirkendall effect in multicomponent systems. Philos. Mag 93, 22972315 (2013).CrossRefGoogle Scholar
Paul, T.R., Belova, I.V., and Murch, G.E.: Analysis of diffusion in high entropy alloys. Mater Chem Phys 210, 301308 (2018).CrossRefGoogle Scholar
Lemmer, H.R., Segaert, O.J.A., and Grace, M.A.: The decay of cobalt 57. Proc. Phys. Soc., London, Sect. A 68, 701708 (1955).CrossRefGoogle Scholar
Ofer, S. and Wiener, R.: Decay of Cr 51. Phys. Rev. 107, 16391641 (1957).CrossRefGoogle Scholar
Heath, R.L., Reich, C.W., and Proctor, D.G.: Decay of 45-day Fe 59. Phys. Rev. 118, 1082 (1960).CrossRefGoogle Scholar
Lederer, C.M. and Shirley, V.S.: Table of Isotopes, 7th ed. (Wiley, New York, 1978).Google Scholar
Ziegler, J.F., Ziegler, D., and Biersack, J.P.: SRIM–The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 18181823 (2010).CrossRefGoogle Scholar
, M.-M., Chisté, V., dulieu, C., Mougeot, X., Chechev, V.P., Kuzmenko, N.K., Kondev, F.G., Luca, A., Galán, M., Nichols, A.L., Arinc, A., Pearce, A., Huang, X., Wang, B.: Table of Radionuclides, Vol. 6 - A = 22 to 242. (Bureau International Des Poids Et Mesures, Sèvres Cedex, France, 2011); pp. 1318.Google Scholar
Wolf, H., Wagner, F., and Wichert, T.: Isolde collaboration, anomalous diffusion profiles of Ag in CdTe due to chemical self-diffusion. Phys. Rev. Lett. 94, 125901 (2005).CrossRefGoogle Scholar
Mehrer, H.: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, Berlin, 2007); p. 53.CrossRefGoogle Scholar
Paul, A., Laurila, T., Vuorinen, V., and Divinski, S.: Themodynamics, Diffusion and Kirkendall Effect in Solids (Springer, Switzerland, 2014).Google Scholar
Hergemöller, F., Wegner, M., Deicher, M., Wolf, H., Brenner, F., Hutter, H., Abart, R., and Stolwijk, N.A.: Potassium self-diffusion in a K-rich single-crystal alkali feldspar. Phys. Chem. Miner. 44, 345351 (2017).CrossRefGoogle Scholar
Strohm, A., Voss, T., Frank, W., Laitinen, P., and Räisänen, J.: Self-diffusion of 71Ge and 31Si in Si–Ge alloys. Z. Metallkd. 93, 737744 (2002).CrossRefGoogle Scholar
Le Claire, A.D.: On the theory of impurity diffusion in metals. Philos. Mag. 7, 141167 (1962).CrossRefGoogle Scholar
Dabrowa, J., Cieslak, G., Stygar, M., Mroczka, K., Berent, K., Kulik, T., and Danielewski, M.: Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0, 0.5, 1). Intermetallics 84, 5261 (2017).CrossRefGoogle Scholar