Hostname: page-component-797576ffbb-lm8cj Total loading time: 0 Render date: 2023-12-03T18:55:59.430Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Uniformity, composition, and surface tension in solution deposited PbZrxTi1-xO3 films

Published online by Cambridge University Press:  03 March 2011

A. Etin
Chemical Engineering Department, Technion, Haifa 32000, Israel
G.E. Shter
Chemical Engineering Department, Technion, Haifa 32000, Israel
V. Gelman
Chemical Engineering Department, Technion, Haifa 32000, Israel
G.S. Grader*
Chemical Engineering Department, Technion, Haifa 32000, Israel
a) Address all correspondence to this author. e-mail:
Get access


High quality, uniform PbZrxTi1-xO3(PZT) films were prepared on the 4 inch wafers by chemical solution deposition (CSD) of 1,3-propanediol precursors. Film uniformity was studied as a function of deposition conditions including spinning rates and co-solvents. Measurements of the surface tension and composition evolution during evaporation and spinning stages showed that the surface tension increases significantly when the co-solvent is nearly completely evaporated. The evaporation of the propanol co-solvent and volatile by-products occurs within the first 5 s of spinning giving rise to defects, whereas octanol is slowly evaporated during 60 s producing uniform coatings. Other co-solvents such as hexanol and pentanol produced uniform films as well. Therefore stabilization of the surface tension in the initial spinning stage is a key to prevent the defect formation. These findings facilitate the deposition of uniform PZT films over large substrates by a simple, scalable, and cost-effective process.

Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1Muralt, P.: PZT thin films for microsensors and actuators, where do we stand? IEEE T. Ultrason. Ferr. 47, 903 (2000).Google Scholar
2Schwartz, R.W., Schneller, T., and Waser, R.: Chemical solution deposition of electronic oxide films. J.C.R. Chimie. 7, 433 (2004).Google Scholar
3Budd, K.D., Dey, S.K., and Payne, D.A.: Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Brit. Ceram. Proc. 36, 107 (1985).Google Scholar
4Yi, G. and Sayer, M.: An acetic acid/water based sol-gel PZT process. J. Sol-Gel Sci. Technol. 6, 65 (1996).Google Scholar
5Phillips, N.J., Calzada, M.L., and Milne, S.J.: Diol-based sol-gel system for the production of thin films of PbTiO3 J. Mater. Chem. 1, 893 (1991).Google Scholar
6Tu, Y.L. and Milne, S.J.: Influence of sol synthesis conditions on the electrical properties of Pb(Zr,Ti)O3 thin films. J. Mater. Sci. Lett. 14, 885 (1995).Google Scholar
7Tu, Y.L. and Milne, S.J.: A study of process variables on the properties of PZT films produced by a single-layer sol-gel technique. J. Mater. Sci. 30, 2507 (1995).Google Scholar
8Sriprang, N., Kaewchinda, D., Kennedy, J.D., and Milne, S.J.: Processing and sol chemistry of a triol-based sol-gel route for preparing lead zirconate titanate thin films. J. Am. Ceram. Soc. 83, 1914 (2000).Google Scholar
9Etin, A., Shter, G.E., Reisner, G.M., Baltianski, S., and Grader, G.S.: Controlled elemental depth profile in sol-gel derived PZT films. J. Am. Ceram. Soc. 89, 2387 (2006).Google Scholar
10Etin, A., Shter, G.E., Reisner, G.M., and Grader, G.S.: Interrelation of ferroelectricity, morphology and thickness in sol-gel derived PZT films. J. Am. Ceram. Soc. (2006, in press).Google Scholar
11Birnie, D.P.: Rational solvent selection strategies to combat striation formation during spin coating of thin films. J. Mater. Res. 16, 1145 (2001).Google Scholar
12Wu, A., Salvado, I.M. Miranda, Vilarinho, P.M., Baptista, J.L., and Silvestre, A.J.D.: Lead zirconate titanate stable stock solution: Characterization and applications. J. Sol-Gel. Sci. Technol. 19, 671 (2000).Google Scholar
13Calzada, M.L., Sirera, R., Carmona, F., and Jimenez, B.: Investigations of a diol-based sol-gel process for the preparation of lead titanate materials. J. Am. Ceram. Soc. 78, 1802 (1995).Google Scholar
14Livage, J. and Sanchez, C.: Sol-gel chemistry. J. Non-Cryst. Solids 145, 11 (1992).Google Scholar
15Kemmit, T. and Daglish, M.: Decomposition of coordinated acetylacetonate in lead zirconate titanate (PZT) precursor solutions. Inorg. Chem. 37, 2063 (1998).Google Scholar
16Colthup, N.B., Daly, L.H., and Wiberley, S.E.: Introduction to Infrared and Raman Spectroscopy 3rd ed. (Academic Press, UK, 1990).Google Scholar
17Huang, Y. and Chou, K.: Studies on the spin coating process of silica films. Ceram. Int. 29, 485 (2003).Google Scholar
18Haas, D.E. and Birnie, D.P.: Evaluation of thermocapillary driving forces in the development of striations during the spin coating process. J. Mater. Sci. 37, 2109 (2002).Google Scholar
19Birnie, D.P.: Combined flow and evaporation during spin coating of complex solutions. J. Non-Cryst. Solids 218, 174 (1997).Google Scholar
20Scriven, L.E. and Sternling, C.V.: Wine fingers. Nature 187, 186 (1960).Google Scholar
21CRC Handbook of Chemistry and Physics, edited by Lide, D.R. (Internet Version 2006, Scholar
22Emslie, A.G., Bonner, F.T., and Peck, L.G.: Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 29, 858 (1958).Google Scholar