Skip to main content
×
×
Home

Additive Manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterials

  • Huachen Cui (a1), Ryan Hensleigh (a2), Hongshun Chen (a1) and Xiaoyu Zheng (a3)
Abstract

3D microarchitected metamaterials exhibit unique, desirable properties influenced by their small length scales and architected layout, unachievable by their solid counterparts and random cellular configurations. However, few of them can be used in high-temperature applications, which could benefit significantly from their ultra-lightweight, ultrastiff properties. Existing high-temperature ceramic materials are often heavy and difficult to process into complex, microscale features. Inspired by this limitation, we fabricated polymer-derived ceramic metamaterials with controlled solid strut size varying from 10-µm scale to a few millimeters with relative densities ranging from as low as 1 to 22%. We found that these high-temperature architected ceramics of identical 3D topologies exhibit size-dependent strength influenced by both strut diameter and strut length. Weibull theory is utilized to map this dependency with varying single strut volumes. These observations demonstrate the structural benefits of increasing feature resolution in additive manufacturing of ceramic materials. Through capitalizing upon the reduction of unit strut volumes within the architecture, high-temperature ceramics could achieve high specific strength with only fraction of the weight of their solid counterparts.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: raynexzheng@vt.edu
References
Hide All
1. Wei, K., Cheng, X.M., Mo, F.H., Wen, W.B., and Fang, D.N.: Design and analysis of integrated thermal protection system based on lightweight C/SiC pyramidal lattice core sandwich panel. Mater. Des. 111, 435 (2016).
2. Bapanapalli, S., Martinez, O., Gogu, C., Sankar, B., Haftka, R., and Blosser, M.: (Student paper) Analysis and design of corrugated-core sandwich panels for thermal protection systems of space vehicles. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (American Institute of Aeronautics and Astronautics, Newport, Rhode Island, 2006), doi: 10.2514/6.2006-1942.
3. We, K., He, R.J., Cheng, X.M., Zhang, R.B., Pei, Y.M., and Fang, D.N.: Fabrication and mechanical properties of lightweight ZrO2 ceramic corrugated core sandwich panels. Mater. Des. 64, 91 (2014).
4. Wei, K., He, R., Cheng, X., Zhang, R., Pei, Y., and Fang, D.: A lightweight, high compression strength ultra high temperature ceramic corrugated panel with potential for thermal protection system applications. Mater. Des. 66(Part B), 552 (2015).
5. Monteverde, F. and Scatteia, L.: Resistance to thermal shock and to oxidation of metal diborides-SiC ceramics for aerospace application. J. Am. Ceram. Soc. 90, 1130 (2007).
6. Matsumura, Y.: Stabilization of Cu/ZnO/ZrO2 catalyst for methanol steam reforming to hydrogen by coprecipitation on zirconia support. J. Power Sources 238, 109 (2013).
7. Tamai, N., Myoui, A., Tomita, T., Nakase, T., Tanaka, J., Ochi, T., and Yoshikawa, H.: Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J. Biomed. Mater. Res. 59, 110 (2002).
8. Peroglio, M., Gremillard, L., Chevalier, J., Chazeau, L., Gauthier, C., and Hamaide, T.: Toughening of bio-ceramics scaffolds by polymer coating. J. Eur. Ceram. Soc. 27, 2679 (2007).
9. Buchanan, R.C.: Ceramic Materials for Electronics, 3rd ed. (Taylor & Francis, New York, New York, 2004).
10. Ibanez-Garcia, N., Martinez-Cisneros, C.S., Valdes, F., and Alonso, J.: Green-tape ceramics. New technological approach for integrating electronics and fluidics in microsystems. TrAC, Trends Anal. Chem. 27, 24 (2008).
11. Rodel, J., Kounga, A.B.N., Weissenberger-Eibl, M., Koch, D., Bierwisch, A., Rossner, W., Hoffmann, M.J., Danzer, R., and Schneider, G.: Development of a roadmap for advanced ceramics: 2010–2025. J. Eur. Ceram. Soc. 29, 1549 (2009).
12. Muralt, P.: Recent progress in materials issues for piezoelectric MEMS. J. Am. Ceram. Soc. 91, 1385 (2008).
13. Waldner, J-B.: Nanocomputers and Swarm Intelligence (Wiley-IEEE Press, New York, New York, 2008).
14. Koller, A.: Structure and Properties of Ceramics (Elsevier, Amsterdam, the Netherlands, 1994).
15. Lawn, B.R.: Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, 1993).
16. Evans, A.G.: Structural reliability—A processing-dependent phenomenon. J. Am. Ceram. Soc. 65, 127 (1982).
17. Zheng, X.Y., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X., and Spadaccini, C.M.: Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373 (2014).
18. Meza, L.R., Das, S., and Greer, J.R.: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322 (2014).
19. Zheng, X.Y., DeOtte, J., Alonso, M.P., Farquar, G.R., Weisgraber, T., Gemberling, S., Lee, H., Fang, N., and Spadaccini, C.M.: Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83, 125001-1 (2012).
20. Zheng, X.Y., Smith, W., Jackson, J., Moran, B., Cui, H.C., Chen, D., Ye, J.C., Fang, N., Rodriguez, N., Weisgraber, T., and Spadaccini, C.M.: Multiscale metallic metamaterials. Nat. Mater. 15, 1100 (2016).
21. Bauer, J., Meza, L.R., Schaedler, T.A., Schwaiger, R., Zheng, X., and Valdevit, L.: Nanolattices: An emerging class of mechanical metamaterials. Adv. Mater. 21, 1701850 (2017).
22. Montemayor, L.C., Wong, W.H., Zhang, Y.W., and Greer, J.R.: Insensitivity to flaws leads to damage tolerance in brittle architected meta-materials. Sci. Rep. 6, (2016).
23. Bauer, J., Schroer, A., Schwaiger, R., and Kraft, O.: Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438 (2016).
24. Jacobsen, A.J., Mahoney, S., Carter, W.B., and Nutt, S.: Vitreous carbon micro-lattice structures. Carbon 49, 1025 (2011).
25. Eckel, Z.C., Zhou, C.Y., Martin, J.H., Jacobsen, A.J., Carter, W.B., and Schaedler, T.A.: 3D printing: Additive manufacturing of polymer-derived ceramics. Science 351, 58 (2016).
26. Hundley, J.M., Eckel, Z.C., Schueller, E., Cante, K., Biesboer, S.M., Yahata, B.D., and Schaedler, T.A.: Geometric characterization of additively manufactured polymer derived ceramics. Addit. Manuf. 18(Suppl. C), 95 (2017).
27. Maxwell, J.C.: On the calculation of the equilibrium and stiffness of frames. Philos. Mag. 27, 294 (1864).
28. Fuller, R.B.: Octet truss. U.S. Patent No. 2 986 241 (1961).
29. Meza, L.R., Phlipot, G.P., Portela, C.M., Maggi, A., Montemayor, L.C., Comella, A., Kochmann, D.M., and Greer, J.R.: Reexamining the mechanical property space of three-dimensional lattice architectures. Acta Mater. 140(Suppl. C), 424 (2017).
30. Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, U.K., 1999).
31. Zanchetta, E., Cattaldo, M., Franchin, G., Schwentenwein, M., Homa, J., Brusatin, G., and Colombo, P.: Stereolithography of SiOC ceramic microcomponents. Adv. Mater. 28, 370 (2016).
32. Rakas, M.A. and Jacobine, A.F.: Mechanical and dynamic mechanical-properties of photocrosslinked norbornene-thiol copolymer films. J. Adhes. 36, 247 (1992).
33. Lowe, A. and Bowman, C.: Thiol-x chemistries in polymer and materials science. RSC Polym. Chem. Ser. 6, 1 (2013).
34. Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J.P., Ermoshkin, A., Samulski, E.T., and DeSimone, J.M.: Continuous liquid interface production of 3D objects. Science 347, 1349 (2015).
35. Du, P., Wang, X.N., Lin, I.K., and Zhang, X.: Effects of composition and thermal annealing on the mechanical properties of silicon oxycarbide films. Sens. Actuators, A 176, 90 (2012).
36. Dong, L., Deshpande, V., and Wadley, H.: Mechanical response of Ti–6Al–4V octet-truss lattice structures. Int. J. Solids Struct. 60–61, 107 (2015).
37. Deshpande, V.S., Fleck, N.A., and Ashby, M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747 (2001).
38. Mocingkharnklang, P., Elzey, D.M., and Wadley, H.N.G.: Titanium matrix composite lattice structures. Composites, Part A 39, 176 (2008).
39. Deshpande, V.S., Ashby, M.F., and Fleck, N.A.: Foam topology bending versus stretching dominated architectures. Acta Mater. 49, 1035 (2001).
40. Flores, O., Bordia, R.K., Bernard, S., Uhlemann, T., Krenkel, W., and Motz, G.: Processing and characterization of large diameter ceramic SiCN monofilaments from commercial oligosilazanes. RSC Adv. 5, 107001 (2015).
41. Bazant, Z.P.: Scaling laws in mechanics of failure. J Eng Mech-Asce. 119, 1828 (1993).
42. Bazant, Z.P.: Size effect on structural strength: A review. Arch Appl Mech. 69, 703 (1999).
43. Tsu, T.C., Mugele, R.A., and Mcclintock, F.A.: A statistical distribution function of wide applicability. J Appl Mech-T Asme. 19, 233 (1952).
44. Riley, F.: Structural Ceramics: Fundamentals and Case Studies (Cambridge University Press, Cambridge, U.K., 2009).
45. Chantikul, P., Bennison, S.J., and Lawn, B.R.: Role of grain-size in the strength and R-curve properties of alumina. J. Am. Ceram. Soc. 73, 2419 (1990).
46. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London, Ser. A 221, 163 (1921).
47. Gao, H.J., Ji, B.H., Jager, I.L., Arzt, E., and Fratzl, P.: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. U. S. A. 100, 5597 (2003).
48. Liontas, R. and Greer, J.R.: 3D nano-architected metallic glass: Size effect suppresses catastrophic failure. Acta Mater. 133, 393 (2017).
49. Meza, L.R., Zelhofer, A.J., Clarke, N., Mateos, A.J., Kochmann, D.M., and Greer, J.R.: Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. U. S. A. 112, 11502 (2015).
50. Zok, F.W.: On weakest link theory and Weibull statistics. J. Am. Ceram. Soc. 100, 1265 (2017).
51. Weibull, W.: A statistical distribution function of wide applicability. J Appl Mech-T Asme. 18, 293 (1951).
52. Weibull, W.: The Phenomenon of Rupture in Solids (Generalstabens Litografiska Anstalts Förlag, Stockholm, Sweden, 1939).
53. Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials (Wiley, New York, New York, 1976).
54. O’Masta, M.R., Dong, L., St-Pierre, L., Wadley, H., and Deshpande, V.: The fracture toughness of octet-truss lattices. J. Mech. Phys. Solids 98, 271 (2017).
55. Messner, M.C.: Optimal lattice-structured materials. J. Mech. Phys. Solids 96, 162 (2016).
56. Quintana-Alonso, I. and Fleck, N.A.: Fracture of brittle lattice materials: A review. In Major Accomplishments in Composite Materials and Sandwich Structures: An Anthology ONR Sponsored Research, Daniel, I.M., Gdoutos, E.E., Rajapakse, Y.D.S., eds. (Springer, Berlin, Germany, 2009); pp. 799816.
57. Bazant, Z.P. and Pang, S.D.: Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors. Proc. Natl. Acad. Sci. U. S. A. 103, 9434 (2006).
58. Genet, M., Couegnat, G., Tomsia, A.P., and Ritchie, R.O.: Scaling strength distributions in quasi-brittle materials from micro- to macro-scales: A computational approach to modeling nature-inspired structural ceramics. J. Mech. Phys. Solids 68, 93 (2014).
59. Begley, M.R., Philips, N.R., Compton, B.G., Wilbrink, D.V., Ritchie, R.O., and Utz, M.: Micromechanical models to guide the development of synthetic ’brick and mortar’ composites. J. Mech. Phys. Solids 60, 1545 (2012).
60. Roohani-Esfahani, S-I., Newman, P., and Zreiqat, H.: Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci. Rep. 6, 19468 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Cui et al. supplementary material
Cui et al. supplementary material 1

 Word (12.4 MB)
12.4 MB

Metrics

Full text views

Total number of HTML views: 60
Total number of PDF views: 441 *
Loading metrics...

Abstract views

Total abstract views: 703 *
Loading metrics...

* Views captured on Cambridge Core between 14th February 2018 - 22nd June 2018. This data will be updated every 24 hours.