Skip to main content
×
×
Home

Additive nanomanufacturing – A review

  • D.S. Engstrom (a1), B. Porter (a1), M. Pacios (a1) and H. Bhaskaran (a1)
Abstract

Additive manufacturing has provided a pathway for inexpensive and flexible manufacturing of specialized components and one-off parts. At the nanoscale, such techniques are less ubiquitous. Manufacturing at the nanoscale is dominated by lithography tools that are too expensive for small- and medium-sized enterprises (SMEs) to invest in. Additive nanomanufacturing (ANM) empowers smaller facilities to design, create, and manufacture on their own while providing a wider material selection and flexible design. This is especially important as nanomanufacturing thus far is largely constrained to 2-dimensional patterning techniques and being able to manufacture in 3-dimensions could open up new concepts. In this review, we outline the state-of-the-art within ANM technologies such as electrohydrodynamic jet printing, dip-pen lithography, direct laser writing, and several single particle placement methods such as optical tweezers and electrokinetic nanomanipulation. The ANM technologies are compared in terms of deposition speed, resolution, and material selection and finally the future prospects of ANM are discussed. This review is up-to-date until April 2014.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: harish.bhaskaran@materials.ox.ac.uk
References
Hide All
1. Feenstra, F., Schaefer, M., Jay, O., and Scudamore, R.: Additive Manufacturing: Strategic Research Agenda. AM Platform: The European collaboration on Additive Manufacturing 1(1), 1 (2013).
2. Boland, T., Ovsianikov, A., Chickov, B.N., Doraiswamy, A., Narayan, R.J., Yeong, W.Y., Leong, K.F., and Chua, C.K.: Rapid prototyping of artificial tissues and medical devices. Adv. Mater. Processess 165(4), 51 (2007).
3. Zein, I., Hutmacher, D.W., Tan, K.C., and Teoh, S.H.: Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4), 1169 (2002).
4. Arias, A.C., MacKenzie, J.D., McCulloch, I., Rivnay, J., and Salleo, A.: Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 110(1), 3 (2010).
5. Zhang, L.L., Zhao, X., Stoller, M.D., Zhu, Y.W., Ji, H.X., Murali, S., Wu, Y.P., Perales, S., Clevenger, B., and Ruoff, R.S.: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12(4), 1806 (2012).
6. Duffy, D.C., McDonald, J.C., Schueller, O.J.A., and Whitesides, G.M.: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70(23), 4974 (1998).
7. Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A., and Quake, S.R.: Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113 (2000).
8. van Noort, R.: The future of dental devices is digital. Dent. Mater. 28(1), 3 (2012).
9. Ryan, G., Pandit, A., and Apatsidis, D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27(13), 2651 (2006).
10. Giannatsis, J. and Dedoussis, V.: Additive fabrication technologies applied to medicine and health care: A review. Int. J. Adv. Manuf. Technol. 40(1–2), 116 (2009).
11. Narayan, R.J., Doraiswamy, A., Chrisey, D.B., and Chichkov, B.N.: Medical prototyping using two photon polymerization. Mater. Today 13(12), 42 (2010).
12. Gu, D.D., Meiners, W., Wissenbach, K., and Poprawe, R.: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133 (2012).
13. Jang, Y., Tambunan, I.H., Tak, H., Nguyen, V.D., Kang, T., and Byun, D.: Non-contact printing of high aspect ratio Ag electrodes for polycrystalline silicone solar cell with electrohydrodynamic jet printing. Appl. Phys. Lett. 102(12), 123901 (2013).
14. Krebs, F.C.: Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394 (2009).
15. Mark, A.G., Gibbs, J.G., Lee, T.C., and Fischer, P.: Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12(9), 802 (2013).
16. Park, J.U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Mukhopadhyay, D.K., Lee, C.Y., Strano, M.S., Alleyne, A.G., Georgiadis, J.G., Ferreira, P.M., and Rogers, J.A.: High-resolution electrohydrodynamic jet printing. Nat. Mater. 6(10), 782 (2007).
17. Min, S.Y., Kim, T.S., Kim, B.J., Cho, H., Noh, Y.Y., Yang, H., Cho, J.H., and Lee, T.W.: Large-scale organic nanowire lithography and electronics. Nat. Commun. 4, 1773 (2013).
18. Wagner, C. and Harned, N.: EUV lithography: Lithography gets extreme. Nat. Photonics 4(1), 24 (2010).
19. Manfrinato, V.R., Zhang, L.H., Su, D., Duan, H.G., Hobbs, R.G., Stach, E.A., and Berggren, K.K.: Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett. 13(4), 1555 (2013).
20. Williams, E.D., Ayres, R.U., and Heller, M.: The 1.7 kilogram microchip: Energy and material use in the production of semiconductor devices. Environ. Sci. Technol. 36(24), 5504 (2002).
21. Couchman, P.R. and Jesser, W.A.: Thermodynamic theory of size dependence of melting temperature in metals. Nature 269(5628), 481 (1977).
22. Allen, G.L., Bayles, R.A., Gile, W.W., and Jesser, W.A.: Small particle melting of pure metals. Thin Solid Films 144(2), 297 (1986).
23. Ginger, D.S., Zhang, H., and Mirkin, C.A.: The evolution of dip-pen nanolithography. Angew. Chem., Int. Ed. 43(1), 30 (2004).
24. Binnig, G., Rohrer, H., Gerber, C., and Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57 (1982).
25. Binnig, G., Quate, C.F., and Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986).
26. Gimzewski, J.K. and Joachim, C.: Nanoscale science of single molecules using local probes. Science 283(5408), 1683 (1999).
27. Eigler, D.M. and Schweizer, E.K.: Positioning single atoms with a scanning tunnelling microscope. Nature 344(6266), 524 (1990).
28. Xia, Y. and Whitesides, G.M.: Soft lithography. Angew. Chem. Int. Ed. 37(5), 550 (1998).
29. Liu, J-F., Cruchon-Dupeyrat, S., Garno, J.C., Frommer, J., and Liu, G-Y.: Three-dimensional nanostructure construction via nanografting: Positive and negative pattern transfer. Nano Lett. 2(9), 937 (2002).
30. Minne, S.C., Manalis, S.R., Atalar, A., and Quate, C.F.: Independent parallel lithography using the atomic force microscope. J. Vac. Sci. Technol., B 14(4), 2456 (1996).
31. Minne, S.C., Adams, J.D., Yaralioglu, G., Manalis, S.R., Atalar, A., and Quate, C.F.: Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 73(12), 1742 (1998).
32. Salaita, K., Wang, Y., and Mirkin, C.A.: Applications of dip-pen nanolithography. Nat. Nanotechnol. 2(3), 145 (2007).
33. Gates, B.D., Xu, Q., Stewart, M., Ryan, D., Willson, C.G., and Whitesides, G.M.: New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105(4), 1171 (2005).
34. Zhang, H. and Mirkin, C.A.: DPN-generated nanostructures made of gold, silver, and palladium. Chem. Mater. 16(8), 1480 (2004).
35. Brown, K., Eichelsdoerfer, D., Liao, X., He, S., and Mirkin, C.: Material transport in dip-pen nanolithography. Front. Phys. 9(3), 385 (2014).
36. Piner, R.D., Zhu, J., Xu, F., Hong, S., and Mirkin, C.A.: Dip-pen nanolithography. Science 283(5402), 661 (1999).
37. Nyamjav, D. and Ivanisevic, A.: Properties of polyelectrolyte templates generated by dip-pen nanolithography and microcontact printing. Chem. Mater. 16(25), 5216 (2004).
38. Suriano, R., Biella, S., Cesura, F., Levi, M., and Turri, S.: Thermoplastic polymers surfaces for dip-pen nanolithography of oligonucleotides. Appl. Surf. Sci. 273, 717 (2013).
39. Park, S., Lee, H.W., Wang, H., Selvarasah, S., Dokmeci, M.R., Park, Y.J., Cha, S.N., Kim, J.M., and Bao, Z.: Highly effective separation of semiconducting carbon nanotubes verified via short-channel devices fabricated using dip-pen nanolithography. ACS Nano 6(3), 2487 (2012).
40. Wang, Y., Maspoch, D., Zou, S., Schatz, G.C., Smalley, R.E., and Mirkin, C.A.: Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl. Acad. Sci. U. S. A. 103(7), 2026 (2006).
41. Li, Y., Maynor, B.W., and Liu, J.: Electrochemical AFM “dip-pen”' nanolithography. J. Am. Chem. Soc. 123(9), 2105 (2001).
42. Fu, L., Liu, X., Zhang, Y., Dravid, V.P., and Mirkin, C.A.: Nanopatterning of “hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3(6), 757 (2003).
43. Lenhert, S., Sun, P., Wang, Y., Fuchs, H., and Mirkin, C.A.: Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small 3(1), 71 (2007).
44. Hirtz, M., Antonios, O., Thanasis, G., Harald, F., and Aravind, V.: Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nat. Commun. 4, (2013).
45. Lee, K-B., Park, S-J., Mirkin, C.A., Smith, J.C., and Mrksich, M.: Protein nanoarrays generated by dip-pen nanolithography. Science 295(5560), 1702 (2002).
46. Lee, K-B., Lim, J-H., and Mirkin, C.A.: Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc. 125(19), 5588 (2003).
47. Demers, L.M., Ginger, D.S., Park, S-J., Li, Z., Chung, S-W., and Mirkin, C.A.: Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296(5574), 1836 (2002).
48. Vega, R.A., Shen, C.K.F., Maspoch, D., Robach, J.G., Lamb, R.A., and Mirkin, C.A.: Monitoring single-cell infectivity from virus-particle nanoarrays fabricated by parallel dip-pen nanolithography. Small 3(9), 1482 (2007).
49. Cronin, S.D., Sabolsky, K., Sabolsky, E.M., and Sierros, K.A.: Dip pen nanolithography and transfer of ZnO patterns on plastics for large-area flexible optoelectronic applications. Thin Solid Films 552, 50 (2014).
50. Salaita, K., Wang, Y., Fragala, J., Vega, R.A., Liu, C., and Mirkin, C.A.: Massively parallel dip–pen nanolithography with 55 000-pen two-dimensional arrays. Angew. Chem. Int. Ed. 45(43), 7220 (2006).
51. Shim, W., Braunschweig, A.B., Liao, X., Chai, J.N., Lim, J.K., Zheng, G.F., and Mirkin, C.A.: Hard-tip, soft-spring lithography. Nature 469(7331), 516 (2011).
52. Giam, L.R. and Mirkin, C.A.: Cantilever-free scanning probe molecular printing. Angew. Chem. Int. Ed. 50(33), 7482 (2011).
53. Huo, F., Zheng, Z., Zheng, G., Giam, L.R., Zhang, H., and Mirkin, C.A.: Polymer pen lithography. Science 321(5896), 1658 (2008).
54. Chai, J., Huo, F., Zheng, Z., Giam, L.R., Shim, W., and Mirkin, C.A.: Scanning probe block copolymer lithography. Proce. Natl. Acad. Sci. 107(47), 20202 (2010).
55. Liu, G., Eichelsdoerfer, D.J., Rasin, B., Zhou, Y., Brown, K.A., Liao, X., and Mirkin, C.A.: Delineating the pathways for the site-directed synthesis of individual nanoparticles on surfaces. Proc. Natl. Acad. Sci. 110(3), 887 (2013).
56. Chai, J., Wong, L.S., Giam, L., and Mirkin, C.A.: Single-molecule protein arrays enabled by scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. 108(49), 19521 (2011).
57. Brown, K.A., Eichelsdoerfer, D.J., Shim, W., Rasin, B., Radha, B., Liao, X., Schmucker, A.L., Liu, G., and Mirkin, C.A.: A cantilever-free approach to dot-matrix nanoprinting. Proc. Natl. Acad. Sci. 110(32), 12921 (2013).
58. Bian, S.D., Zieba, S.B., Morris, W., Han, X., Richter, D.C., Brown, K.A., Mirkin, C.A., and Braunschweig, A.B.: Beam pen lithography as a new tool for spatially controlled photochemistry, and its utilization in the synthesis of multivalent glycan arrays. Chem. Sci. 5(5), 2023 (2014).
59. Curran, J.M., Chen, R., Stokes, R., Irvine, E., Graham, D., Gubbins, E., Delaney, D., Amro, N., Sanedrin, R., Jamil, H., and Hunt, J.A.: Nanoscale definition of substrate materials to direct human adult stem cells towards tissue specific populations. J. Mater. Sci. Mater. Med. 21(3), 1021 (2010).
60. Sekula, S., Fuchs, J., Weg-Remers, S., Nagel, P., Schuppler, S., Fragala, J., Theilacker, N., Franueb, M., Wingren, C., Ellmark, P., Borrebaeck, C.A.K., Mirkin, C.A., Fuchs, H., and Lenhert, S.: Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. Small 4(10), 1785 (2008).
61. Mitsakakis, K., Sekula-Neuner, S., Lenhert, S., Fuchs, H., and Gizeli, E.: Convergence of dip-pen nanolithography and acoustic biosensors towards a rapid-analysis multi-sample microsystem. Analyst 137(13), 3076 (2012).
62. Zhou, X.Z., Boey, F., Huo, F.W., Huang, L., and Zhang, H.: Chemically functionalized surface patterning. Small 7(16), 2273 (2011).
63. Wu, C.C., Reinhoudt, D.N., Otto, C., Subramaniam, V., and Velders, A.H.: Strategies for patterning biomolecules with dip-pen nanolithography. Small 7(8), 989 (2011).
64. Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., and Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5(3), 181 (2010).
65. Bhaskaran, H., Sebastian, A., and Despont, M.: Nanoscale PtSi tips for conducting probe technologies. IEEE. Trans. Nanotechnol. 8(1), 128 (2009).
66. Bhaskaran, H., Sebastian, A., Drechsler, U., and Despont, M.: Encapsulated tips for reliable nanoscale conduction in scanning probe technologies. Nanotechnology 20 (10), 105701 (2009).
67. Fletcher, P.C., Felts, J.R., Dai, Z.T., Jacobs, T.D., Zeng, H.J., Lee, W., Sheehan, P.E., Carlisle, J.A., Carpick, R.W., and King, W.P.: Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing. ACS Nano 4(6), 3338 (2010).
68. Delaney, J.T., Smith, P.J., and Schubert, U.S.: Inkjet printing of proteins. Soft Matter 5(24), 4866 (2009).
69. Fuller, S.B., Wilhelm, E.J., and Jacobson, J.M.: Ink-jet printed nanoparticle microelectromechanical systems. J. Microelectromech. Syst. 11(1), 54 (2002).
70. Barrero, A. and Loscertales, I.G.: Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89 (2007).
71. Choi, H.K., Park, J.U., Park, O.O., Ferreira, P.M., Georgiadis, J.G., and Rogers, J.A.: Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl. Phys. Lett. 92(12), 123109 (2008).
72. Galliker, P., Schneider, J., Eghlidi, H., Kress, S., Sandoghdar, V., and Poulikakos, D.: Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat. Commun. 3, 890 (2012).
73. Onses, M.S., Song, C., Williamson, L., Sutanto, E., Ferreira, P.M., Alleyne, A.G., Nealey, P.F., Ahn, H., and Rogers, J.A.: Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly. Nat. Nanotechnol. 8(9), 667 (2013).
74. Huang, Y., Bu, N., Duan, Y., Pan, Y., Liu, H., Yin, Z., and Xiong, Y.: Electrohydrodynamic direct-writing. Nanoscale 5(24), 12007 (2013).
75. Sundaray, B., Subramanian, V., Natarajan, T.S., Xiang, R.Z., Chang, C.C., and Fann, W.S.: Electrospinning of continuous aligned polymer fibers. Appl. Phys. Lett. 84(7), 1222 (2004).
76. Huang, Y.A., Wang, X.M., Duan, Y.Q., Bu, N.B., and Yin, Z.P.: Controllable self-organization of colloid microarrays based on finite length effects of electrospun ribbons. Soft Matter 8(32), 8302 (2012).
77. Bisht, G.S., Canton, G., Mirsepassi, A., Kuinsky, L., Oh, S., Dunn-Rankin, D., and Madou, M.J.: Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Lett. 11(4), 1831 (2011).
78. Bu, N., Huang, Y., Wang, X., and Yin, Z.: Continuously tunable and oriented nanofiber direct-written by mechano-electrospinning. Mater. Manuf. Processes 27(12), 1318 (2012).
79. Lee, M. and Kim, H.Y.: Toward nanoscale three-dimensional printing: Nanowalls built of electrospun nanofibers. Langmuir 30(5), 1210 (2014).
80. Li, D. and Xia, Y.N.: Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4(5), 933 (2004).
81. Zhang, Y.Z., Wang, X., Feng, Y., Li, J., Lim, C.T., and Ramakrishna, S.: Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. Biomacromolecules 7(4), 1049 (2006).
82. Wang, D.Z., Jayasinghe, S.N., Edirisinghe, M.J., and Luklinska, Z.B.: Coaxial electrohydrodynamic direct writing of nano-suspensions. J. Nanopart. Res. 9(5), 825 (2007).
83. Nuansing, W., Frauchiger, D., Huth, F., Rebollo, A., Hillenbrand, R., and Bittner, A.M.: Electrospinning of peptide and protein fibres: Approaching the molecular scale. Faraday Discuss. 166, 209 (2013).
84. Salata, O.V.: Tools of nanotechnology: Electrospray. Curr. Nanosci. 1(1), 25 (2005).
85. Jaworek, A. and Sobczyk, A.T.: Electrospraying route to nanotechnology: An overview. J. Electrostat. 66(3–4), 197 (2008).
86. Lee, D.Y., Shin, Y.S., Park, S.E., Yu, T.U., and Hwang, J.: Electrohydrodynamic printing of silver nanoparticles by using a focused nanocolloid jet. Appl. Phys. Lett. 90(8), 081905 (2007).
87. Fischer, J., Ergin, T., and Wegener, M.: Three-dimensional polarization-independent visible-frequency carpet invisibility cloak. Opt. Lett. 36(11), 2059 (2011).
88. Xu, B-B., Xia, H., Niu, L-G., Zhang, Y-L., Sun, K., Chen, Q-D., Xu, Y., Lv, Z-Q., Li, Z-H., Misawa, H., and Sun, H-B.: Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small 6(16), 1762 (2010).
89. Fischer, J. and Wegener, M.: Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express 1(4), 614 (2011).
90. Cao, Y. and Gu, M.: λ/26 silver nanodots fabricated by direct laser writing through highly sensitive two-photon photoreduction. Appl. Phys. Lett. 103(21), 213104 (2013).
91. Kawata, S., Sun, H.B., Tanaka, T., and Takada, K.: Finer features for functional microdevices. Nature 412(6848), 697 (2001).
92. Deubel, M., von Freymann, G., Wegener, M., Pereira, S., Busch, K., and Soukoulis, C.M.: Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444 (2004).
93. Ergin, T., Stenger, N., Brenner, P., Pendry, J.B., and Wegener, M.: Three-dimensional invisibility cloak at optical wavelengths. Science 328(5976), 337 (2010).
94. Röhrig, M., Thiel, M., Worgull, M., and Hölscher, H.: 3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces. Small 8(19), 3009 (2012).
95. Li, X., Cao, Y., and Gu, M.: Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. Opt. Lett. 36(13), 2510 (2011).
96. Kabouraki, E., Giakoumaki, A.N., Danilevicius, P., Gray, D., Vamvakaki, M., and Farsari, M.: Redox multiphoton polymerization for 3D nanofabrication. Nano Lett. 13(8), 3831 (2013).
97. Vasilantonakis, N., Terzaki, K., Sakellari, I., Purlys, V., Gray, D., Soukoulis, C.M., Vamvakaki, M., Kafesaki, M., and Farsari, M.: Three-dimensional metallic photonic crystals with optical bandgaps. Adv. Mater. 24(8), 1101 (2012).
98. Staude, I., Decker, M., Ventura, M.J., Jagadish, C., Neshev, D.N., Gu, M., and Kivshar, Y.S.: Hybrid high-resolution three-dimensional nanofabrication for metamaterials and nanoplasmonics. Adv. Mater. 25(9), 1260 (2013).
99. Frölich, A., Fischer, J., Zebrowski, T., Busch, K., and Wegener, M.: Titania woodpiles with complete three-dimensional photonic bandgaps in the visible. Adv. Mater. 25(26), 3588 (2013).
100. Fischer, J. and Wegener, M.: Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 7(1), 22 (2013).
101. Cao, Y., Gan, Z., Jia, B., Evans, R.A., and Gu, M.: High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. Opt. Express 19(20), 19486 (2011).
102. Rittweger, E., Han, K.Y., Irvine, S.E., Eggeling, C., and Hell, S.W.: STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics 3(3), 144 (2009).
103. Fischer, J., von Freymann, G., and Wegener, M.: The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater. 22(32), 3578 (2010).
104. El-Kady, M.F. and Kaner, R.B.: Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013).
105. Park, J.B., Xiong, W., Gao, Y., Qian, M., Xie, Z.Q., Mitchell, M., Zhou, Y.S., Han, G.H., Jiang, L., and Lu, Y.F.: Fast growth of graphene patterns by laser direct writing. Appl. Phys. Lett. 98(12), 123109 (2011).
106. Kwok, K. and Chiu, W.K.S.: Growth of carbon nanotubes by open-air laser-induced chemical vapor deposition. Carbon 43(2), 437 (2005).
107. Mahjouri-Samani, M., Zhou, Y.S., Xiong, W., Gao, Y., Mitchell, M., Jiang, L., and Lu, Y.F.: Diameter modulation by fast temperature control in laser-assisted chemical vapor deposition of single-walled carbon nanotubes. Nanotechnology 21(39), 395601 (2010).
108. Hong, S., Yeo, J., Kim, G., Kim, D., Lee, H.H., Kwon, J., Lee, P., and Ko, S.H.: Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano 7(6), 5024 (2013).
109. Liao, X., Brown, K.A., Schmucker, A.L., Liu, G.L., He, S., Shim, W., and Mirkin, C.A.: Desktop nanofabrication with massively multiplexed beam pen lithography. Nat. Commun. 4, 2103 (2013).
110. Leggett, G.J.: Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution. Chem. Soc. Rev. 35(11), 1150 (2006).
111. ul Haq, E., Liu, Z.M., Zhang, Y.A., Ahmad, S.A.A., Wong, L.S., Armes, S.P., Hobbs, J.K., Leggett, G.J., Micklefield, J., Roberts, C.J., and Weaver, J.M.R.: Parallel scanning near-field photolithography: The snomipede. Nano Lett. 10(11), 4375 (2010).
112. Srituravanich, W., Pan, L., Wang, Y., Sun, C., Bogy, D.B., and Zhang, X.: Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol. 3(12), 733 (2008).
113. Sugimoto, Y., Abe, M., Hirayama, S., Oyabu, N., Custance, O., and Morita, S.: Atom inlays performed at room temperature using atomic force microscopy. Nat. Mater. 4(2), 156 (2005).
114. Custance, O., Perez, R., and Morita, S.: Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4(12), 803 (2009).
115. Gohlke, D., Mishra, R., Restrepo, O.D., Lee, D., Windl, W., and Gupta, J.: Atomic-scale engineering of the electrostatic landscape of semiconductor surfaces. Nano Lett. 13(6), 2418 (2013).
116. Olyanich, D.A., Kotlyar, V.G., Utas, T.V., Zotov, A.V., and Saranin, A.A.: The manipulation of C-60 in molecular arrays with an STM tip in regimes below the decomposition threshold. Nanotechnology 24(5), 055302 (2013).
117. Morgenstern, K., Lorente, N., and Rieder, K.H.: Controlled manipulation of single atoms and small molecules using the scanning tunnelling microscope. Phys. Status Solidi B 250(9), 1671 (2013).
118. Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., and Simmons, M.Y.: A single-atom transistor. Nat. Nanotechnol. 7(4), 242 (2012).
119. Qin, S.Y., Kim, T.H., Wang, Z.H., and Li, A.P.: Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: From individual atoms to nanowires. Rev. Sci. Instrum. 83(6), 063704 (2012).
120. Molhave, K., Wich, T., Kortschack, A., and Boggild, P.: Pick-and-place nanomanipulation using microfabricated grippers. Nanotechnology 17(10), 2434 (2006).
121. Sardan, O., Eichhorn, V., Petersen, D.H., Fatikow, S., Sigmund, O., and Boggild, P.: Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology 19(49), 495503 (2008).
122. Cagliani, A., Wierzbicki, R., Occhipinti, L., Petersen, D.H., Dyvelkov, K.N., Sukas, O.S., Herstrom, B.G., Booth, T., and Boggild, P.: Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper. J. Micromech. Microeng. 20(3), 035009 (2010).
123. Kim, S., Ratchford, D.C., and Li, X.: Atomic force microscope nanomanipulation with simultaneous visual guidance. ACS Nano 3(10), 2989 (2009).
124. Kim, S., Shafiei, F., Ratchford, D., and Li, X.: Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22(11), 115301 (2011).
125. Castillo, J., Dimaki, M., and Svendsen, W.E.: Manipulation of biological samples using micro and nano techniques. Integr. Biol. 1(1), 30 (2009).
126. Junno, T., Deppert, K., Montelius, L., and Samuelson, L.: Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 66(26), 3627 (1995).
127. Li, G., Xi, N., Yu, M., and Fung, W-K.: Development of augmented reality system for AFM-based nanomanipulation. IEEE Trans. Nanotechnol. 9(2), 358 (2004).
128. Li, G., Xi, N., Chen, H., Pomeroy, C., and Prokos, M.: “Videolized” atomic force microscopy for interactive nanomanipulation and nanoassembly. IEEE Trans. Nanotechnol. 4(5), 605 (2005).
129. Xi, N. and Li, G.: Introduction to Nanorobotic Manipulation and Assembly (Artech House, Norwood, 2012), p. 1.
130. Zhang, J., Member, S., Xi, N., and Chen, H.: Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors. IEEE Trans. Nanotechnol. 8(2), 245 (2009).
131. Xiong, X., Makaram, P., Busnaina, A., Bakhtari, K., Somu, S., McGruer, N., and Park, J.: Large scale directed assembly of nanoparticles using nanotrench templates. Appl. Phys. Lett. 89(19), 193108 (2006).
132. Park, J-U., Lee, S., Unarunotai, S., Sun, Y., Dunham, S., Song, T., Ferreira, P.M., Alleyene, A.G., and Paik, U., and Rogers, J.A.: Nanoscale, electrified liquid jets for high-resolution printing of charge. Nano Lett. 10(2), 584 (2010).
133. Kolíbal, M., Konečný, M., Ligmajer, F., Škoda, D., Vystavěl, T., Zlámal, J., Varga, P., and Šikola, T.: Guided assembly of gold colloidal nanoparticles on silicon substrates prepatterned by charged particle beams. ACS Nano 6(11), 10098 (2012).
134. Zhou, Y.S., Liu, Y., Zhu, G., Lin, Z-H., Pan, C., Jing, Q., and Wang, Z.L.: In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 13(6), 2771 (2013).
135. Yilmaz, C., Kim, T-H., and Somu, S., and Busnaina, A.A.: Large-Scale nanorods nanomanufacturing by electric-field-directed assembly for nanoscale device applications. IEEE Trans. Nanotechnol. 9(5), 653 (2010).
136. Wood, N.R., Wolsiefer, A.I., Cohn, R.W., and Williams, S.J.: Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe. Electrophoresis 34(13), 1922 (2013).
137. Brown, K.A. and Westervelt, R.M.: Triaxial AFM probes for noncontact trapping and manipulation. Nano Lett. 11(8), 3197 (2011).
138. Brown, K.A. and Westervelt, R.M.: Proposed triaxial atomic force microscope contact-free tweezers for nanoassembly. Nanotechnology 20(38), 385302 (2009).
139. Jonás, A. and Zemánek, P.: Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29(24), 4813 (2008).
140. Tong, L., Miljković, V.D., and Käll, M.: Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett. 10(1), 268 (2010).
141. Guffey, M.J. and Scherer, N.F.: All-optical patterning of Au nanoparticles on surfaces using optical traps. Nano Lett. 10(11), 4302 (2010).
142. Yan, Z., Sweet, J., Jureller, J.E., Guffey, M.J., Pelton, M., and Scherer, N.F.: Controlling the position and orientation of single silver nanowires on a surface using structured optical fields. ACS Nano 6(9), 8144 (2012).
143. Yan, Z., Shah, R.A., Chado, G., Gray, S.K., Pelton, M., and Scherer, N.F.: Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. ACS Nano 7(2), 1790 (2013).
144. Chen, Y-F., Serey, X., Sarkar, R., Chen, P., and Erickson, D.: Controlled photonic manipulation of proteins and other nanomaterials. Nano Lett. 12(3), 1633 (2012).
145. Huang, H-W., Bhadrachalam, P., Ray, V., and Koh, S.J.: Single-particle placement via self-limiting electrostatic gating. Appl. Phys. Lett. 93(7), 073110 (2008).
146. Berthelot, J., Aćimović, S.S., Juan, M.L., Kreuzer, M.P., Renger, J., and Quidant, R.: Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol. 9(4), 295 (2014).
147. Fedoruk, M., Meixner, M., Carretero-Palacios, S., Lohmüller, T., and Feldmann, J.: Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles. ACS Nano 7(9), 7648 (2013).
148. Bishop, K.J.M., Wilmer, C.E., Soh, S., and Grzybowski, B.A.: Nanoscale forces and their uses in self-assembly. Small 5(14), 1600 (2009).
149. Sakakibara, K., Hill, J.P., and Ariga, K.: Thin-film-based nanoarchitectures for soft matter: Controlled assemblies into two-dimensional worlds. Small 7(10), 1288 (2011).
150. Barrow, S.J., Funston, A.M., Wei, X.Z., and Mulvaney, P.: DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today 8(2), 138 (2013).
151. Gong, J.X., Li, G.D., and Tang, Z.Y.: Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today 7(6), 564 (2012).
152. Bellido, E., Domingo, N., Ojea-Jimenez, I., and Ruiz-Molina, D.: Structuration and integration of magnetic nanoparticles on surfaces and devices. Small 8(10), 1465 (2012).
153. Dong, B., Zhou, T., Zhang, H., and Li, C.Y.: Directed self-assembly of nanoparticles for nanomotors. ACS Nano 7(6), 5192 (2013).
154. Galisteo-López, J.F., Ibisate, M., Sapienza, R., Froufe-Pérez, L.S., Blanco, A., and López, C.: Self-assembled photonic structures. Adv. Mater. 23(1), 30 (2011).
155. Kim, F.S., Ren, G., and Jenekhe, S.A.: One-dimensional nanostructures of π-conjugated molecular systems: Assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem. Mater. 23(3), 682 (2011).
156. Kraus, T., Malaquin, L., Schmid, H., Riess, W., Spencer, N.D., and Wolf, H.: Nanoparticle printing with single-particle resolution. Nat. Nanotechnol. 2(9), 570 (2007).
157. Park, H., Afzali, A., Han, S-J., Tulevski, G.S., Franklin, A.D., Tersoff, J., Hannon, J.B., and Haensch, W.: High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 7(12), 787 (2012).
158. Cui, Y., Bjork, M.T., Liddle, J.A., Sonnichsen, C., Boussert, B., and Alivisatos, A.P.: Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett. 4(6), 1093 (2004).
159. Carlson, A., Bowen, A.M., Huang, Y.G., Nuzzo, R.G., and Rogers, J.A.: Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24(39), 5284 (2012).
160. Zheng, Y., Lalander, C.H., Thai, T., Dhuey, S., Cabrini, S., and Bach, U.: Gutenberg-style printing of self-assembled nanoparticle arrays: Electrostatic nanoparticle immobilization and DNA-mediated transfer. Angew. Chem., Int. Ed. Engl. 50(19), 4398 (2011).
161. Porter, B.F., Abelmann, L., and Bhaskaran, H.: Design parameters for voltage-controllable directed assembly of single nanoparticles. Nanotechnology 24(40), 405304 (2013).
162. Gooding, J.J. and Ciampi, S.: The molecular level modification of surfaces: From self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 40(5), 2704 (2011).
163. Pulsipher, A. and Yousaf, M.N.: Surface chemistry and cell biological tools for the analysis of cell adhesion and migration. ChemBioChem 11(6), 745 (2010).
164. Martinez, J., Martinez, R.V., and Garcia, R.: Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography. Nano Lett. 8(11), 3636 (2008).
165. Hong, S. and Mirkin, C.A.: A nanoplotter with both parallel and serial writing capabilities. Science 288(5472), 1808 (2000).
166. Hong, S., Zhu, J., and Mirkin, C.A.: Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286(5439), 523 (1999).
167. Pena, D.J., Raphael, M.P., and Byers, J.M.: “Dip-Pen” nanolithography in registry with photolithography for biosensor development. Langmuir 19(21), 9028 (2003).
168. Williams, E.: Energy intensity of computer manufacturing: Hybrid assessment combining process and economic input-output methods. Environ. Sci. Technol. 38(22), 6166 (2004).
169. Kane, J., Inan, M., and Saraf, R.F.: Self-assembled nanoparticle necklaces network showing single-electron switching at room temperature and biogating current by living microorganisms. ACS Nano 4(1), 317 (2010).
170. Bonzani, I.C., George, J.H., and Stevens, M.M.: Novel materials for bone and cartilage regeneration. Curr. Opin. Chem. Biol. 10(6), 568 (2006).
171. Pham, Q.P., Sharma, U., and Mikos, A.G.: Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 12(5), 1197 (2006).
172. Wang, B.C., Wang, Y.Z., Yin, T.Y., and Yu, Q.S.: Applications of electrospinning technique in drug delivery. Chem. Eng. Commun. 197(10), 1315 (2010).
173. Brafman, D.A.: Constructing stem cell microenvironments using bioengineering approaches. Physiol. Genomics 45(23), 1123 (2013).
174. Zhang, Y.B., Small, J.P., Pontius, W.V., and Kim, P.: Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86(7), 073104 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed