Skip to main content
×
×
Home

Aging behavior of 17-4 PH stainless steel studied using XRDLPA for separating the influence of precipitation and dislocations on microstrain

  • R. Manojkumar (a1), S. Mahadevan (a1), C.K. Mukhopadhyay (a1) and B.P.C. Rao (a1)
Abstract
Abstract

The aging behavior of precipitation hardenable 17-4 PH stainless steel is studied by analyzing the changes in microstrain, crystallite size, and dislocation density derived from the modified Williamson–Hall (mWH) method and the Fourier analysis of XRD profiles. Aging treatment of this steel at 380, 430, and 480 °C for 0.5, 1, and 3 h durations leads to changes in the microstrain due to precipitation and substructural changes caused by dislocation annihilation. The microstrain estimated from the mWH method is dominated by the precipitate-induced effects. The influence of precipitates and dislocations on the mean squared strain 〈ε2(L)〉 are separated by fitting the variation of 〈ε2(L)〉 with an expression P 0 + P 1/L + P 2/L 2, where the parameter (P 0)0.5 and P 1 are shown to be related to the precipitate-induced and dislocation density-induced microstrain, respectively. The study shows that the XRD profile analysis can be used to separate the combined effects of precipitation and dislocation annihilation.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: manoj_raja@igcar.gov.in
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. Viswanathan U.K., Nayar P.K.K., and Krishnan R.: Kinetics of precipitation in 17-4 PH stainless steel. Mater. Sci. Technol. 5, 346 (1989).
2. Viswanathan U.K., Banerjee S., and Krishnan R.: Effects of aging on the microstructure of 17-4 PH stainless steel. Mater. Sci. Eng., A 104, 181 (1988).
3. Miller M.K. and Burke M.G.: Characterization of copper precipitation in a 17/4 pH steel: A combined APFIM/TEM Study In 5th International Symposium on the Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors (American Nuclear Society, Monterery, California, 1992); pp. 689695.
4. Murayama M., Katayama Y., and Hono K.: Microstructural evolution in a 17-4 PH stainless steel after aging at 400 °C. Metall. Mater. Trans. A 30, 345 (1999).
5. Bhambroo R., Roychowdhury S., Kain V., and Raja V.S.: Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainless steel. Mater. Sci. Eng., A 568, 127 (2013).
6. Mahadevan S., Manojkumar R., Jayakumar T., Das C.R., and Rao B.P.C.: Precipitation induced changes in microstrain and its relation with hardness and tempering parameter in 17-4 PH stainless steel. Metall. Mater. Trans. A 47, 3109 (2016).
7. Hsiao C.N., Chiou C.S., and Yang J.R.: Aging reactions in a 17-4 PH stainless steel. Mater. Chem. Phys. 74, 134 (2002).
8. Vershinina T. and Leont’eva-Smirnova M.: Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel. Mater. Charact. 125, 23 (2017).
9. Warren B.E. and Averbach B.L.: The effect of cold-work distortion on X-ray patterns. J. Appl. Phys. 21, 595 (1950).
10. Williamson G.K. and Hall W.H.: X ray line braodening from filed aluminum and wolfram. Acta Metall. 1, 22 (1953).
11. Nandhi R.K., Kuo H.K., Schlosberg W., Wissler G., Cohen J.B., and Crist B. Jr.: Single peak methods for Fourier analysis of peak shapes. J. Appl. Crystallogr. 17, 22 (1984).
12. Ungár T. and Borbély A.: The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 69, 3173 (1996).
13. Stephens P.W.: Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Crystallogr. 32, 281 (1999).
14. Birkenstock J., Fischer R.K., and Messner T.: BRASS, Ver 2.0: The Bremen Rietveld Analysis and Structure Suite (2005). Available at: www.brass.uni-bremen.de (accessed 14 September 2017).
15. Mahadevan S., Jayakumar T., Rao B.P.C., Kumar A., Rajkumar K.V., and Raj B.: X-ray diffraction profile analysis for characterizing isothermal aging behavior of M250 grade maraging steel. Metall. Mater. Trans. A 39, 1978 (2008).
16. Rothman R.L. and Cohen J.B.: X-ray study of faulting in BCC metals and alloys. J. Appl. Phys. 42(3), 971 (1971).
17. Wilkens M.: X-ray line broadening of plastically deformed crystals. In Proceedings on the 5th Riso International Symposium on the Material Science (Riso National Laboratory, Roskilde, Denmark, 1984); pp. 153168.
18. Balzar D. and Ledbetter H.: Voigt-function modeling in Fourier analysis of size and strain broadened X-ray diffraction peaks. J. Appl. Crystallogr. 26, 97 (1993).
19. Van Berkum J.G.M., Vermeulen A.C., Delhez R., De Keijser H., and Mittemeijer E.J.: Applicabilities of the Warren–Averbach analysis and an alternative analysis for separation of size and strain broadening. J. Appl. Crystallogr. 27, 345 (1994).
20. Howard S.A. and Snyder R.L.: The use of direct convolution products in profile and pattern fitting algorithms. I. Development of the algorithms. J. Appl. Crystallogr. 22, 238 (1989).
21. Enzo S., Fagherazzi G., Bendetti A., and Polizzi S.: A profile-fitting procedure for analysis of broadened X-ray diffraction. J. Appl. Crystallogr. 21, 536 (1988).
22. Sanchez-Bajo F., Ortiz A.L., and Cumbrera F.L.: Novel analytical model for the determination of grain size distributions in nanocrystalline materials with low lattice microstrains by X-ray diffractometry. Acta Mater. 54, 1 (2006).
23. Prabal D.: On use of pseudo-Voigt profiles in diffraction line broadening analysis. Fizika A 9, 61 (2000).
24. Ribárik G., Ungár T., and Gubicza J.: MWP-fit: A program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions. J. Appl. Crystallogr. 34, 669 (2001).
25. Williamson G.K. and Smallman R.E.: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Philos. Mag. 1, 34 (1956).
26. Hurley D.C., Balzar D., and Purtscher P.T.: Nonlinear ultrasonic assessment of precipitation hardening in ASTM A710 steel. J. Mater. Res. 15, 2036 (2000).
27. Martin J.W.: Micromechanisms in Particle-Hardened Alloys (Cambridge University Press, New York, NY, 1980).
28. Ghosh S.K., Haldar A., and Chattopadhyay P.P.: On the Cu precipitation behavior in thermomechanically processed low carbon microalloyed steels. Mater. Sci. Eng., A 519, 88 (2009).
29. Huang K., Qinglong Z., Yanjun L., and Knut M.: Two-stage annealing of a cold-rolled Al–Mn–Fe–Si alloy with different microchemistry states. J. Mater. Process. Technol. 221, 87 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 113 *
Loading metrics...

* Views captured on Cambridge Core between 7th November 2017 - 15th December 2017. This data will be updated every 24 hours.