Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-13T18:54:06.460Z Has data issue: false hasContentIssue false

An extended criterion for estimation of glass-forming ability of metals

Published online by Cambridge University Press:  18 July 2011

Dmitri V. Louzguine-Luzgin*
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
*
a) Address all correspondence to this author. e-mail: dml@imr.tohoku.ac.jp
Get access

Abstract

If a metal contracts upon solidification, the specific volume of a metallic liquid phase must not be smaller than that of the corresponding crystal. As molten metals have higher thermal expansion coefficients compared with those of the corresponding crystals, the intersection point of two specific-volume–temperature plots of the liquid and the corresponding solid crystalline phase by analogy with Kauzmann’s paradox for entropy could be treated as an ideal glass-transition temperature. This paper describes this phenomenon observed for a number of pure metals and gives a semiempirical criterion for the achievement of a good glass-forming ability.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Debenedetti, P.G. and Stillinger, F.H.: Supercooled liquids and the glass transition. Nature 410, 259 (2001).CrossRefGoogle ScholarPubMed
2Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).Google Scholar
3Van den Beukel, A. and Sietsma, J.: The glass transition as a free volume related kinetic phenomenon. Acta Metall. Mater. 38, 383 (1990).CrossRefGoogle Scholar
4Turnbull, D. and Cohen, M.H.: On the free-volume model of the liquid–glass transition. J. Chem. Phys. 52, 3038 (1970).Google Scholar
5Fox, T.G. and Flory, P.J.: Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21, 581 (1950).CrossRefGoogle Scholar
6Cohen, M.H. and Turnbull, D.: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164 (1959).Google Scholar
7Cohen, M.H. and Grest, G.S.: Liquid-glass transition, a free-volume approach. Phys. Rev. 20, 1077 (1979).Google Scholar
8Brüning, R. and Samwer, K.: Glass transition on long time scales. Phys. Rev. B 46, 11318 (1992).CrossRefGoogle ScholarPubMed
9Kauzmann, W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219 (1948).Google Scholar
10Yavari, A.R.: Small volume change on melting as a new criterion for easy formation of metallic glasses. Phys. Lett. A. 95, 165 (1983).Google Scholar
11Gale, W.F. and Totemeier, T.C.: Smithells Metals Reference Book, 8th edition, (Elsevier Butterworth-Heinemann Ltd., Oxford UK, 2004), p. 14–1.Google Scholar
12Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Desai, P.D.: Thermophysical properties of matter, inThermal Expansion, Metallic Elements and Alloys, Vol. 12, (IFI/Plenum, New York, NY and Washington, DC, 1975), pp. 1100.Google Scholar
13Bar’yakhtar, V.G., Mikhalova, L.E., Il’inski, A.G., Romanova, A.V., and Khristenko, T.M.: Thermal expansion mechanism of liquid metals. Sov. Phys. JETP 68, 811 (1989).Google Scholar
14Gale, W.F. and Totemeier, T.C.: Smithells Metals Reference Book, 8th edition, (Elsevier Butterworth-Heinemann Ltd., Oxford UK, 2004), pp. 14–10.Google Scholar
15Coy, W. and Mateer, R.: Density of molten aluminum by maximum bubble pressure method. Trans. ASM 58, 99 (1965).Google Scholar
16Saito, S., Shiraishi, Y., and Sakuma, Y.: Density measurement of molten metals by levitation technique at temperatures between 1800° and 2200 °C. Trans. Iron Steel Inst. Jpn. 9, 118 (1969).CrossRefGoogle Scholar
17Watanabe, S.: Densities and viscosities of iron, cobalt and Fe–Co alloy in liquid state. Trans. Jpn. Inst. Metals 12, 17 (1971).CrossRefGoogle Scholar
18Brillo, J. and Egry, I.: Density determination of liquid copper, nickel, and their alloys. Int. J. Thermophys. 24, 1155 (2003).CrossRefGoogle Scholar
19Steinberg, D.J.: A simple relationship between the temperature dependence of the density of liquid metals and their boiling temperatures. Metall. Trans. 5, 1341 (1974).Google Scholar
20Louzguine, D.V., Yavari, A.R., Ota, K., Vaughan, G., and Inoue, A.: Synchrotron x-ray radiation diffraction studies of thermal expansion, free volume change and glass transition phenomenon in Cu-based glassy and nanocomposite alloys on heating. J. Non-Cryst. Solids 351, 1639 (2005).Google Scholar
21Greer, A.L.: Thermodynamics of undercooled liquids. J. Less Common Met. 145, 131 (1988).CrossRefGoogle Scholar
22Inoue, A., Negishi, T., Kimura, H.M., Zhang, T., and Yavari, A.R.: High packing density of Zr- and Pd-based bulk amorphous. Alloys Mater. Trans., JIM 39, 318 (1998).CrossRefGoogle Scholar
23Battezzati, L. and Baricco, M.: Analysis of volume effects in metallic glass formation. J. Less Common Met. 145, 31 (1988).CrossRefGoogle Scholar
24Chen, H.S.: Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metall. 22, 1505 (1974).CrossRefGoogle Scholar
25Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).Google Scholar
26Louzguine-Luzgin, D.V., Setyawan, A.D., Kato, H., and Inoue, A.: Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys. Appl. Phys. Lett. 88, 251902 (2006).Google Scholar
27Perepezko, J.H. and Hebert, R.J.: Amorphous aluminum alloys—Synthesis and stability. J. Metall. 54, 34 (2002).Google Scholar
28Inoue, A.: High-strength bulk amorphous-alloys with low critical cooling rates. Mater. Trans., JIM 36, 866 (1995).CrossRefGoogle Scholar
29Shneidman, V.A. and Uhlmann, D.R.: The fast cooling/heating rate effects in devitrification of glasses. II. Crystallization kinetics. J. Chem. Phys. 109, 186 (1998).CrossRefGoogle Scholar
30Klement, W., Willens, R.H., and Duwez, P.: Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869 (1960).Google Scholar
31Turnbull, D. and Cohen, M.H.: Free-volume model of the amorphous phase: Glass transition. J. Chem. Phys. 34, 120 (1961).CrossRefGoogle Scholar
32Louzguine-Luzgin, D.V. and Inoue, A.: Nano-devitrification of glassy alloys. J. Nanosci. Nanotechnol. 5, 999 (2005).Google Scholar
33Lu, Z.P. and Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).Google Scholar
34Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).Google Scholar
35Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).Google Scholar
36Ichitsubo, T., Matsubara, E., Numakura, H., Tanaka, K., Nishiyama, N., and Tarumi, R.: Glass-liquid transition in a less-stable metallic glass. Phys. Rev. B 72, 052201 (2005).CrossRefGoogle Scholar
37Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).Google Scholar