Skip to main content Accessibility help

An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments

  • W.C. Oliver (a1) and G.M. Pharr (a2)


The indentation load-displacement behavior of six materials tested with a Berkovich indenter has been carefully documented to establish an improved method for determining hardness and elastic modulus from indentation load-displacement data. The materials included fused silica, soda–lime glass, and single crystals of aluminum, tungsten, quartz, and sapphire. It is shown that the load–displacement curves during unloading in these materials are not linear, even in the initial stages, thereby suggesting that the flat punch approximation used so often in the analysis of unloading data is not entirely adequate. An analysis technique is presented that accounts for the curvature in the unloading data and provides a physically justifiable procedure for determining the depth which should be used in conjunction with the indenter shape function to establish the contact area at peak load. The hardnesses and elastic moduli of the six materials are computed using the analysis procedure and compared with values determined by independent means to assess the accuracy of the method. The results show that with good technique, moduli can be measured to within 5%.



Hide All
1.Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).
2.Oliver, W. C., Hutchings, R., and Pethica, J. B., in ASTM STP 889, edited by Blau, P. J. and Lawn, B. R. (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 90108.
3.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).
4.Pethica, J. B., in Ion Implantation into Metals, edited by Ashworth, V., Grant, W., and Procter, R. (Pergamon Press, Oxford, 1982), pp. 147156.
5.Loubet, J. L., Georges, J. M., Marchesini, O., and Meille, G., J. Tribology 106, 43 (1984).
6.Newey, D., Wilkens, M. A., and Pollock, H. M., J. Phys. E: Sci. Instrum. 15, 119 (1982).
7.Stone, D., LaFontaine, W. R., Alexopoulos, P., Wu, T-W., and Li, Che-Yu, J. Mater. Res. 3, 141 (1988).
8.Gilman, J. J., in The Science of Hardness Testing and Its Research Applications, edited by Westbrook, J. H. and Conrad, H. (American Society for Metals, Metals Park, OH, 1973), pp. 5174.
9.Oliver, W. C., MRS Bulletin XI, 15 (1986).
10.Oliver, W. C., McHargue, C. J., and Zinkle, S. J., Thin Solid Films 153, 185 (1987).
11.Boussinesq, J., Applications des Potentiels a I'étude de équilibre et du mouvement des solides élastiques (Gauthier-Villars, Paris, 1885).
12.Hertz, H., reine, J. und angewandte Mathematik 92, 156 (1882).
13.Love, A. E. H., Philos. Trans. A 228, 377 (1929).
14.Love, A. E. H., Quart. J. Math. 10, 161 (1939).
15.Johnson, K. L., Contact Mechanics (Cambridge University Press, Cambridge, 1985).
16.Sneddon, I. N., Int. J. Engng. Sci. 3, 47 (1965).
17.Harding, J. W. and Sneddon, I. N., Proc. Cambridge Philos. Soc. 41, 12 (1945).
18.Tabor, D., Proc. R. Soc. A 192, 247 (1948).
19.Stillwell, N. A. and Tabor, D., Proc. Phys. Soc. London 78, 169 (1961).
20.Ternovskii, A. P., Alekhin, V. P., Shorshorov, M. Kh., Khrushchov, M. M., and Skvortsov, V. N., Zavod. Lab. 39, 1242 (1973).
21.Bulychev, S. I., Alekhin, V. P., Shorshorov, M. Kh., Ternovskii, A. P., and Shnyrev, G. D., Zavod. Lab. 41, 1137 (1975).
22.Bulychev, S. I., Alekhin, V. P., Shorshorov, M. Kh., and Ternovskii, A. P., Prob. Prochn. 9, 79 (1976).
23.Shorshorov, M. Kh., Bulychev, S. I., and Alekhin, V. P., Sov. Phys. Dokl. 26, 769 (1982).
24.Bulychev, S. I. and Alekhin, V. P., Zavod. Lab. 53, 76 (1987).
25.Pharr, G. M., Oliver, W. C., and Brotzen, F. R., J. Mater. Res. 7, 613 (1992).
26.King, R. B., Int. J. Solids Structures 3, 1657 (1987).
27.Bhattacharya, A. K. and Nix, W. D., Int. J. Solids Structures 24, 881 (1988).
28.Pharr, G. M., Oliver, W. C., and Clarke, D. R., Scripta Metall. 23, 1949 (1989).
29.Pharr, G. M., Oliver, W. C., and Clarke, D. R., J. Elec. Mater. 19, 881 (1990).
30.Pharr, G. M., Oliver, W. C., and Harding, D. S., J. Mater. Res. 6, 1129 (1991).
31.Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (John Wiley and Sons, New York, 1982), p. 837.
32.Pethica, J. B. and Oliver, W. C., Physica Scripta T19, 61 (1987).
33.Pethica, J. B. and Oliver, W. C., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, 13 (1989).
34.Oliver, W. C. and Pethica, J. B., U.S. Patent No. 4 848141, July 1989.
35.Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (The Press, M. I. T., Cambridge, MA, 1971).
36.Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64, 533 (1981).
37. General Electric Fused Quartz Products Technical Data, general catalog number 7705–7725, April 1985.

Related content

Powered by UNSILO

An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments

  • W.C. Oliver (a1) and G.M. Pharr (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.