Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 39
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Acomb, Jonathan C. Wu, Chunfei and Williams, Paul T. 2016. The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks. Applied Catalysis B: Environmental, Vol. 180, p. 497.


    Acomb, Jonathan C. Wu, Chunfei and Williams, Paul T. 2015. Effect of growth temperature and feedstock:catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics. Journal of Analytical and Applied Pyrolysis, Vol. 113, p. 231.


    Awadallah, Ahmed E. Aboul-Enein, Ateyya A. Aboul-Gheit, Noha A. K. and El-Ahwany, Omnia M. 2015. Correlation Between Periodicity and Catalytic Growth Activity of Bimetallic Co-group VI/MgO Catalysts for Production of Carbon Nanotubes by Acetylene Using Chemical Vapor Deposition. Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 23, Issue. 7, p. 591.


    Bolourian Kashi, Mehran Aghababazadeh, Roya Arabi, Hossein and Mirhabibi, Alireza 2014. In situ fabrication of carbon nanotube–MgAl2O4 nanocomposite powders through hydrogen-free CCVD. Advanced Powder Technology, Vol. 25, Issue. 1, p. 250.


    Boujnah, M. Dakir, O. Zaari, H. Benyoussef, A. and El Kenz, A. 2014. Optoelectronic response of spinels CdX2O4 with X = (Al, Ga, In) through the modified Becke–Johnson functional. Journal of Applied Physics, Vol. 116, Issue. 12, p. 123703.


    Reshak, A.H. Khan, Saleem Ayaz and Alahmed, Z.A. 2014. Investigation of electronic structure and optical properties of MgAl2O4: DFT approach. Optical Materials, Vol. 37, p. 322.


    Bouhemadou, A. Al-Essa, S. Allali, D. Ghebouli, M.A. and Bin-Omran, S. 2013. Electronic and optical properties of ZnSc2S4 and CdSc2S4 cubic spinels by the modified Becke–Johnson density functional. Solid State Sciences, Vol. 20, p. 127.


    Allali, D. Bouhemadou, A. and Bin-Omran, S. 2012. Theoretical prediction of the structural, electronic and optical properties of SnB2O4 (B=Mg, Zn, Cd). Computational Materials Science, Vol. 51, Issue. 1, p. 194.


    Flahaut, E. Rul, S. Lefévre-Schlick, F. Laurent, Ch. and Peigney, A. 2012. Ceramic Nanomaterials and Nanotechnology II.


    Ahmad, Javed Ehsan Mazhar, Muhammad Qadeer Awan, Muhammad and Naeem Ashiq, Muhammad 2011. Effect of substitution of K+ ions on the structural and electrical properties of nanocrystalline MgAl2O4 spinel oxide. Physica B: Condensed Matter, Vol. 406, Issue. 18, p. 3484.


    Becker, Michael J. Xia, Wei Tessonnier, Jean-Philippe Blume, Raoul Yao, Lide Schlögl, Robert and Muhler, Martin 2011. Optimizing the synthesis of cobalt-based catalysts for the selective growth of multiwalled carbon nanotubes under industrially relevant conditions. Carbon, Vol. 49, Issue. 15, p. 5253.


    Dasgupta, Kinshuk Joshi, Jyeshtharaj B. and Banerjee, Srikumar 2011. Fluidized bed synthesis of carbon nanotubes – A review. Chemical Engineering Journal, Vol. 171, Issue. 3, p. 841.


    Li, Yongdan Li, Douxing and Wang, Gaowei 2011. Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: A review. Catalysis Today, Vol. 162, Issue. 1, p. 1.


    Li, Qiao-ling Ye, Yun Zhao, De-xu Zhang, Wei and Zhang, Yan 2011. Preparation and characterization of CNTs–SrFe12O19 composites. Journal of Alloys and Compounds, Vol. 509, Issue. 5, p. 1777.


    Kushwaha, A.K. 2010. Vibrational and elastic properties of aluminate spinel MgAl2O4. Physica B: Condensed Matter, Vol. 405, Issue. 13, p. 2795.


    Bouhemadou, A 2008. Theoretical study of the structural, elastic and electronic properties of the GeX2O4(X= Mg, Zn, Cd) compounds under pressure. Modelling and Simulation in Materials Science and Engineering, Vol. 16, Issue. 5, p. 055007.


    Legorreta Garcia, Felipe Peigney, Alain and Laurent, Christophe 2008. Tetragonal-(Zr,Co)O2 solid solution: Combustion synthesis, thermal stability in air and reduction in H2, H2–CH4 and H2–C2H4 atmospheres. Materials Research Bulletin, Vol. 43, Issue. 11, p. 3088.


    Moura, Flávia C.C. Tristão, Juliana C. Lago, Rochel M. and Martel, Richard 2008. LaFexMoyMnzO3 perovskite as catalyst precursors for the CVD synthesis of carbon nanotubes. Catalysis Today, Vol. 133-135, p. 846.


    Bouhemadou, A and Khenata, R 2007. Calculated structural, elastic and electronic properties of SiX2O4 (X = Mg, Zn, Cd) compounds under pressure. Modelling and Simulation in Materials Science and Engineering, Vol. 15, Issue. 7, p. 787.


    Bouhemadou, A. Khenata, R. and Zerarga, F. 2007. Ab initio study of the structural and elastic properties of spinels MgX2O4(X = Al, Ga, In) under pressure. The European Physical Journal B, Vol. 56, Issue. 1, p. 1.


    ×

An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg1−xMxAl2O4 spinel catalysts

  • A. Govindaraj (a1), E. Flahaut (a2), Ch. Laurent (a2), A. Peigney (a2), A. Rousset (a2) and C. N. R. Rao (a3)
  • DOI: http://dx.doi.org/10.1557/JMR.1999.0344
  • Published online: 01 January 2011
Abstract

Carbon nanotubes produced by the treatment of Mg1−xMxAl2O4 (M = Fe, Co, or Ni; x = 0.1, 0.2, 0.3, or 0.4) spinels with an H2–CH4 mixture at 1070 °C have been investigated systematically. The grains of the oxide-metal composite particles are uniformly covered by a weblike network of carbon nanotube bundles, several tens of micrometers long, made up of single-wall nanotubes with a diameter close to 4 nm. Only the smallest metal particles (<5 nm) are involved in the formation of the nanotubes. A macroscopic characterization method involving surface area measurements and chemical analysis has been developed in order to compare the different nanotube specimens. An increase in the transition metal content of the catalyst yields more carbon nanotubes (up to a metal content of 10.0 wt% or x = 0.3), but causes a decrease in carbon quality. The best compromise is to use 6.7 wt% of metal (x = 0.2) in the catalyst. Co gives superior results with respect to both the quantity and quality of the nanotubes. In the case of Fe, the quality is notably hampered by the formation of Fe3C particles.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.S. Iijima , Nature 354, 56 (1991).

2.P. Calvert , Nature 357, 365 (1992).

3.P. M. Ajayan , O. Stephan , C. Colliex , and D. Trauth , Science 265, 1212 (1994).

4.R. S. Ruoff and D. C. Lorents , Carbon 33, 925 (1995).

6.J. F. Despres , E. Daguerre , and K. Lafdi , Carbon 33, 87 (1995).

7.S. Iijima , Ch. Brabec , A. Maiti , and J. Bernholc , J. Phys. Chem. 104, 2089 (1996).

8.M. M. J. Treacy , T. W. Ebbesen , and J. M. Gibson , Nature 381, 678 (1996).

9.N. Hamada , S. Sawada , and A. Oshiyama , Phys. Rev. Lett. 68, 1579 (1994).

10.J. W. Mintmire , B. I. Dunlap , and C. T. White , Phys. Rev. Lett. 68, 631 (1992).

12.Y. Nakayama , S. Akita , and Y. Shimada , Jpn. J. Appl. Phys. 34, L10 (1995).

13.A. Yu. Kasumov , I.I. Khodos , P. M. Ajayan , and C. Colliex , Europhys. Lett. 34, 429 (1996).

14.T.W. Ebbesen , H. J. Lezec , H. Hiura , J.W. Bennett , H.F. Ghaemi , and T. Thio , Nature 382, 54 (1996).

15.H. Dai , E. W. Wong , and C. M. Lieber , Science 272, 523 (1996).

16.S. J. Tans , M. H. Devoret , H. Dai , A. Thess , R.E. Smalley , L. J. Geerligs , and C. Dekker , Nature 386, 474 (1997).

17.T.W. Ebbesen and P. M. Ajayan , Nature 358, 220 (1992).

19.S. Iijima and T. Ichihashi , Nature 363, 603 (1993).

20.D. S. Bethune , C. H. Kiang , M. S. de Vries , G. Gorman , R. Savoy , J. Vasquez , and R. Beyers , Nature 363, 605 (1993).

21.C. H. Kian , W. A. Goddard III, R. Beyers , J.R. Salem , and D. Bethune , J. Phys. Chem. Solids 57, 35 (1996).

22.S. Seraphin and D. Zhou , Appl. Phys. Lett. 64, 2087 (1994).

23.C. Guerret-Plecourt , Y. Le Bouar , A. Loiseau , and H. Pascard , Nature 372, 761 (1994).

25.T. W. Ebbesen , P. M. Ajayan , H. Hiura , and K. Tanigaki , Nature 367, 519 (1992).

26.K. Tohji , T. Goto , H. Takahashi , Y. Shinoda , N. Shimizu , B. Jeyadevan , I. Matsuoka , Y. Saito , A. Kasuhka , T. Oshuna , K. Hiraga , and Y. Nishima , Nature 383, 679 (1996).

27.T. Guo , P. Nikolaev , A. Thess , D. T. Colbert , and R. E. Smalley , Chem. Phys. Lett. 243, 49 (1995).

28.A. Thess , R. Lee , P. Nikolaev , H. Dai , P. Petit , J. Robert , C. Xu , Y. H. Lee , S. G. Kim , A. G. Rinkler , D. T. Colbert , G. E. Scuseria , D. Tomanek , J. E. Fisher , and R. E. Smalley , Science 273, 483 (1996).

29.A. Oberlin , M. Endo , and T. Koyama , J. Cryst. Growth 32, 335 (1976).

30.F. Benissad-Aissani and P. Gadelle , Carbon 31, 21 (1993).

31.M. J. Yacaman , M. M. Yoshida , L. Rendon , and J.G. Santiesteban , Appl. Phys. Lett. 62, 657 (1993).

33.V. Ivanov , A. Fonseca , J. B. Nagy , A. Lucas , P. Lambin , D. Bernaerts , and X. B. Zhang , Carbon 33, 1727 (1995).

34.K. Hernadi , A. Fonseca , J. B. Nagy , D. Bernaerts , J. Riga , and A. Lucas , Synth. Metals 77, 31 (1996).

35.A. Fonseca , K. Hernadi , J. B. Nagy , Ph. Lambin , and A. Lucas , Carbon 33, 1759 (1995).

36.R. Sen , A. Govindaraj , and C. N. R. Rao , Chem. Phys. Lett. 267, 276 (1997); also see

C. N. R. Rao , R. Sen , B. C. Satishkumar , and A. Govindaraj , Chem. Commun. 1525 (1998).

37.S. Herrere and P. Gadelle , Carbon 33, 234 (1995).

38.M. Endo , K. Takeuchi , K. Kobori , K. Takahashi , H. W. Kroto , and A. Sarkar , Carbon 33, 873 (1993).

39.H. Dai , A. G. Rinzler , P. Nikolaev , A. Thess , D. T. Colbert , and R. E. Smalley , Chem. Phys. Lett. 260, 471 (1996).

40.G. G. Tibbetts , J. Cryst. Growth 66, 632 (1984).

41.R. T. K. Baker , P. S. Harris , R. B. Thomas , and R. J. Waite , J. Catal. 30, 86 (1993).

42.S. Amelinckx , X. B. Zhang , D. Bernaerts , X. F. Zhang , V. Ivanov , and J. B. Nagy , Science 265, 635 (1995).

43.K. Hernadi , A. Fonseca , J.B. Nagy , D. Bernaerts , A. Fudala , and A. A. Lucas , Zeolites 17, 416 (1996).

45.X. Devaux , Ch. Laurent , and A. Rousset , Nanostruct. Mater. 2, 339 (1993).

46.Ch. Laurent , A. Rousset , M. Verelst , K. R. Kannan , A. R. Raju , and C. N. R. Rao , J. Mater. Chem. 3, 513 (1993).

48.Ch. Laurent , Ch. Blaszczyk , M. Brieu , and A. Rousset , Nanostruct. Mater. 6, 317 (1995).

49.O. Quénard , Ch. Laurent , M. Brieu , and A. Rousset , Nanostruct. Mater. 7, 497 (1996).

50.O. Quénard , E. De Grave , Ch. Laurent , and A. Rousset , J. Mater. Chem. 7, 2457 (1997).

51.V. Carles , M. Brieu , and A. Rousset , Nanostruct. Mater. 8, 529544 (1997).

56.J. J. Kingsley and K. C. Patil , Mater. Lett. 6, 427 (1988).

57.K.C. Patil , Bull. Mater. Sci. 16, 533 (1993).

58.S.R. Jain , K.C. Adiga , and V. R. Pai Verneker , Combust. Flame 40, 71 (1981).

61.G.A. Jablonski , F. W. Geurts , A. Sacco Jr, and R. R. Biederman , Carbon 30, 87 (1992).

62.S. Iijima , P.M. Ajayan , and T. Ichihashi , Phys. Rev. Lett. 69, 3100 (1992).

63.N.M. Rodriguez , M.S. Kim , and R. T. K. Baker , J. Phys. Chem. 98, 13108 (1994).

65.B.C. Satishkumar , A. Govindaraj , and C.N.R Rao , J. Phys. B 29, 4925 (1996).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×