Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-08T07:28:53.527Z Has data issue: false hasContentIssue false

An optimized process for fabrication of SrBi2Ta2O9 thin films using a novel chemical solution deposition technique

Published online by Cambridge University Press:  31 January 2011

Seung-Hyun Kim
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
D. J. Kim
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
K. M. Lee
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
M. Park
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
A. I. Kingon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
R. J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695
J. Im
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
S. K. Streiffer
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Ferroelectric SrBi2Ta2O9 (SBT) thin films on Pt/ZrO2/SiO2/Si were successfully prepared by using an alkanolamine-modified chemical solution deposition method. It was observed that alkanolamine provided stability to the SBT solution by retarding the hydrolysis and condensation rates. The crystallinity and the microstructure of the SBT thin films improved with increasing annealing temperature and were strongly correlated with the ferroelectric properties of the SBT thin films. The films annealed at 800 °C exhibited low leakage current density, low voltage saturation, high remanent polarization, and good fatigue characteristics at least up to 1010 switching cycles, indicating favorable behavior for memory applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Deb, K.K., Bennett, K.W., Brody, P.S., and Melnick, B.M., Integrated Ferroelectrics 6, 253 (1995).CrossRefGoogle Scholar
2.Kim, S-H., Kim, D-J., Streiffer, S.K., and Kingon, A.I., J. Mater. Res. 14, 2476 (1999).CrossRefGoogle Scholar
3.Al-Shareef, H.N., Auciello, O., and Kingon, A.I., J. Appl. Phys. 77, 2146 (1995).CrossRefGoogle Scholar
4.Chung, I.S., Lee, J.K., Lee, W.I., Chung, C.W., and Desu, S.B., in Ferroelectric Thin Films, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 249.Google Scholar
5.Chen, J., Udayakumar, K.R., Brooks, K.G., and Cross, L.E., J. Appl. Phys. 71, 4465 (1992).CrossRefGoogle Scholar
6.Kim, S-H., Hong, J.G., Streiffer, S.K., and Kingon, A.I., J. Mater. Res. 14, 1018 (1999).CrossRefGoogle Scholar
7.Mihara, T., Watanabe, H., and Paz de Araujo, C.A., Jpn. J. Appl. Phys. 33, 528 (1994).Google Scholar
8.Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 222 (1995).CrossRefGoogle Scholar
9.Paz de Araujo, C.A., Cuchiaro, J.D., Mcmillan, L.D., Scott, M.C., and Scott, J.F., Nature 374, 627 (1995).CrossRefGoogle Scholar
10.Joshi, P.C., Ryu, S.O., Tirumala, S., and Desu, S.B., in Ferroelectric Thin Films, edited by Treece, R.E., Jones, R.E., Foster, C.M., Desu, S.B., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 493, Warrendale, PA, 1998), p. 215.Google Scholar
11.Kim, S-H., Kim, C.E., and Oh, Y.J., Thin Solid Films 305, 321 (1997).CrossRefGoogle Scholar
12.Schwartz, R.W., Boyle, T.J., Lockwood, S.J., Sinclair, M.B., Dimos, D., and Buchheit, C.D., Integrated Ferroelectrics 7, 259 (1995).CrossRefGoogle Scholar
13.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64, 2717 (1988).CrossRefGoogle Scholar
14.Kim, S-H., Kim, C.E., and Oh, Y.J., J. Mater. Sci. 30, 5639 (1995).CrossRefGoogle Scholar
15.Sanchez, C., Livage, J., Henry, M., and Babonneau, F., J. Non-Cryst. Solids 100, 65 (1988).CrossRefGoogle Scholar
16.Yi, G. and Sayer, M., Ceram. Bull. 70, 1175 (1991).Google Scholar
17.Scherer, G.W., J. Am. Ceram. Soc. 73, 3 (1990).CrossRefGoogle Scholar
18.Ito, Y., Ushikubo, M., Yokoyama, S., Atsuki, T., Yonezawa, T., and Ogi, K., Integrated Ferroelectrics 14, 123 (1997).CrossRefGoogle Scholar
19.Boyle, T.J., Buchheit, C.D., Rodriguez, M.A., Al-Shareef, H.N., Scott, B., and Ziller, J.W., J. Mater. Res. 11, 1 (1996).CrossRefGoogle Scholar
20.Moret, M.P., Zallen, R., Newnham, R.E., Joshi, P.C., and Desu, S.B., Phys. Rev. B 57, 5715 (1998).CrossRefGoogle Scholar
21.Perez, W., Ching-Prado, E., Reynes-Figueroa, A., Katiyar, R.S., Ravichandran, D., and Bhalla, A.S., in Ferroelectric Thin Films, edited by Treece, R.E., Jones, R.E., Foster, C.M., Desu, S.B., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 493, Warrendale, PA, 1998), p. 237.Google Scholar
22.Husson, E., Abello, L., and Morell, A., Mater. Res. Bull. 25, 539 (1990).CrossRefGoogle Scholar
23.Nagata, M., Vijay, D.P., Zhang, X., and Desu, S.B., Phys. Status Solidi A 157, 75 (1996).CrossRefGoogle Scholar
24.Du, X. and Chen, I., in Ferroelectric Thin Films, edited by Treece, R.E., Jones, R.E., Foster, C.M., Desu, S.B., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 493, Warrendale, PA, 1998), p. 261.Google Scholar
25.Amanuma, K. and Kunio, T., Integrated Ferroelectrics 16, 175 (1997).CrossRefGoogle Scholar