Skip to main content Accessibility help
×
Home

An outlook on the potential of Si nanocrystals as luminescent probes for bioimaging

  • Elisabetta Borsella (a1), Rosaria D’Amato (a1), Mauro Falconieri (a2), Enrico Trave (a3), Alice Panariti (a4) and Ilaria Rivolta (a4)...

Abstract

Silicon nanocrystals (Si-nc) present several plus points as advanced fluorescent biomarkers but suffer from difficulties met in controlling their intrinsic photoluminescence (PL). Here, we first consider the reasons for this difficulty, showing results that support an interface defect-related origin of the PL. Attainment of a controlled PL emission would then require tuning of defects in the capping oxide, a hard and yet unaddressed task. Alternatively, we demonstrate the possible use of Si-nc as antennas, or sensitizers, of a luminescent rare-earth ion in an engineered fluorophore. In this approach the relatively high and broadband optical absorption of Si-nc was exploited, keeping the advantages of a near-infrared inorganic light emitter. Another fundamental part of the assessment of Si-nc for bioimaging is their biocompatibility. Here, we report toxicity tests based on the lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays on epithelial cells and fibroblasts, confirming that Si-nc in concentration suitable for luminescent labeling do not affect significantly the cells viability.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: mauro.falconieri@enea.it

References

Hide All
1.Probst, J., Dembski, S., Milde, M., and Rupp, S.: Luminescent nanoparticles and their use for in vitro and in vivo diagnostics. Expert Rev. Mol. Diagn. 12, 49 (2012).
2.Wang, F., Tan, W.B., Zhang, Y., Fan, X., and Wang, M.: Luminescent nanomaterials for biological labelling. Nanotechnology 17, R1R13 (2006).
3.Klostranec, J.K. and Chen, W.C.: Quantum dots in biological and biomedical research: Recent progress and present challenges. Adv. Mater. 18, 1953 (2006).
4.Parak, W.J., Pellegrino, T., and Plank, C.: Labelling of cells with quantum dots. Nanotechnology 16, R9R25 (2005).
5.Derfus, A.M., Chan, W.C., and Bathia, S.N.: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11 (2004).
6.Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by Pavesi, L. and Turan, R. (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010).
7.Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).
8.Prokes, S.M., Carlos, W.E., and Glembocki, O.J.: Defect-based model for room-temperature visible photoluminescence in porous silicon. Phys. Rev. B 50, 17093 (1994).
9.Prakash, G.V., Daldosso, N., Degoli, E., Iacona, F., Cazzanelli, M., Gaburro, Z., Pacifici, D., Priolo, F., Arcangeli, C., Filonov, A.B., Ossicini, S., and Pavesi, L.: Structural and optical properties of PECVD grown silicon nanocrystals. J. Nanosci. Tech. 1, 159 (2001).
10.Walters, R.J., Kalkman, J., Polman, A., Atwater, H.A., and de Dood, M.J.A.: Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Phys. Rev. B 73, 132302 (2006).
11.Huisken, F., Ledoux, G., Guillois, O., and Reynaud, C.: Light emitting silicon nanocrystals from laser pyrolysis. Adv. Mater. 14, 1861 (2002).
12.D’Amato, R., Falconieri, M., Fabbri, F., Bello, V., and Borsella, E.: Preparation of luminescent Si nanoparticles by tailoring the size, crystallinity and surface composition. J. Nanopart. Res. 12, 1845 (2010).
13.Lacour, F., Guillois, O., Portier, X., Perez, H., Herlin, N., and Reynaud, C.: Laser pyrolysis synthesis and characterization of luminescent silicon nanocrystals. Physica E 38, 1 (2007).
14.Belomoin, G., Therrien, J., and Nayfeh, M.: Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles. Appl. Phys. Lett. 77, 779 (2000).
15.Li, X., He, Y., Talukdar, S.S., and Swihart, M.T.: Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19, 8490 (2003).
16.Mangolini, L., Thimsen, E., and Kortshagen, U.: High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655 (2005).
17.Choi, J., Wang, N.S., and Reipa, V.: Photoassisted tuning of silicon nanocrystal photoluminescence. Langmuir 23, 3388 (2007).
18.Veinot, J.: Surface passivation and functionalization of Si nanocrystals, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by Pavesi, L. and Turan, R. (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 155.
19.Wang, Q., Ni, H., Pietzsch, A., Hennies, F., Bao, Y., and Chao, Y.: Synthesis of water-dispersible photoluminescent silicon nanoparticles and their use in biological fluorescent imaging. J. Nanopart. Res. 13, 405 (2011).
20.Li, Z.F. and Ruckenstein, E.: Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 4, 1463 (2004).
21.Warner, J.H., Hoshino, A., Yamamoto, K., and Tilley, R.D.: Water-soluble photoluminescent silicon quantum dots. Angew. Chem. 117, 4626 (2005).
22.Erogbogbo, F., Yong, K-T., Roy, I., Xu, G.X., Prasad, P.N., and Swihart, M.T.: Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873 (2008).
23.He, Y., Zhong, Y., Peng, F., Wei, X., Su, Y., Lu, Y., Su, S., Gu, W., Liao, L., and Lee, S-T.: One-pot microwave synthesis of water-dispersible, ultraphoto-and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 133, 14192 (2011).
24.Borsella, E., Falconieri, M., Herlin, N., Loschenov, V., Miserocchi, G., Nie, Y., Rivolta, I., Ryabova, A., and Wang, D.: Biomedical and sensor applications of silicon nanoparticles, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by Pavesi, L. and Turan, R. (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 507.
25.He, G., Zheng, Q., Yong, K-T., Erogbogbo, F., Swihart, M.T., and Prasad, P.N.: Two-and three-photon absorption and frequency upconverted emission of silicon quantum dots. Nano Lett. 8, 2688 (2008).
26.Falconieri, M., D’Amato, R., Fabbri, F., Carpanese, M., and Borsella, E.: Two-photon excitation of luminescence in pyrolytic silicon nanocrystals. Physica E 41, 951 (2009).
27.Erogbogbo, F., Yong, K-T., Roy, I., Hu, R., Law, W-C., Zhao, W., Ding, H., Wu, F., Kumar, R., Swihart, M.T., and Prasad, P.N.: In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5, 413 (2011).
28.Erogbogbo, F., Tien, C., Chang, C., Yong, K., Law, W., Ding, H., Roy, I., Swihart, M., and Prasad, P.: Bioconjugation of luminescent silicon quantum dots for selective up-take by cancer cells. Bioconjugate Chem. 22, 1081 (2011).
29.Tu, C., Xuchu, M., Pantazis, P., Kauzlarich, S.M., and Louie, A.Y.: Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J. Am. Chem. Soc. 132, 2016 (2010).
30.Pi, X.D., Mangolini, L., Campbell, S.A., and Kortshagen, U.: Room-temperature atmospheric oxidation of Si nanocrystals after HF etching. Phys. Rev. B 75, 085423 (2007).
31.Vincent, J., Maurice, V., Paquez, X., Sublemontier, O., Laconte, Y., Guillois, O., Reynaud, C., Herlin-Boime, N., Raccurt, O., and Tardif, F.: Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots. J. Nanopart. Res. 12, 39 (2010).
32.Clark, R.J., Dang, M.K.M., and Veinot, J.G.C.: Exploration of organic acid chain length on water-soluble silicon quantum dot surfaces. Langmuir 26, 15657 (2010).
33.Sato, S. and Swihart, M.: Propionic-acid-terminated silicon nanoparticles: Synthesis and optical characterization. Chem. Mater. 19, 680 (2006).
34.Delarue, C., Allan, G., and Lannoo, M.: Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B 48, 11024 (1993).
35.Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., and Delarue, C.: Electronic states and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 82, 197 (1999).
36.Pudzer, A., Williamson, A.J., Grossman, J.C., and Galli, G.: Computational studies of the optical emission of silicon nanocrystals. J. Am. Chem. Soc. 125, 2786 (2003).
37.Glinka, Y.D., Lin, S.H., Hwang, L.P., and Chen, Y.T.: Photoluminescence from mesoporous silica: Similarity of properties to porous silicon. Appl. Phys. Lett. 77, 3968 (2000).
38.Glinka, Y.D., Zyubin, A.S., Mobel, A.M., Lin, S.H., Hwang, L.P., and Chen, Y.T.: Photoluminescence from mesoporous silica akin to that from nanoscale silicon: The nature of light-emitters. Chem. Phys. Lett. 358, 180 (2002).
39.Godefroo, S., Hayne, M., Jivanescu, M., Stesmans, A., Zacharias, M., Lebedev, O.I., Van Tendeloo, G., and Moshchalkov, V.V.: Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3, 174 (2008).
40.Choi, J., Wang, N.S., and Reipa, V.: Conjugation of the photoluminescent silicon nanoparticles to streptavidin. Bioconjugate Chem. 22, 1081 (2008).
41.Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K.: 1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+. Appl. Phys. Lett. 71, 1198 (1997).
42.Priolo, F., Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Irrera, A.: Role of energy transfer in the optical properties of un-doped and Er-doped interacting Si nanocrystals. J. Appl. Phys. 89, 264 (2001).
43.Roschuk, T., Li, J., Wojcik, J., Mascher, P., and Calder, I.D.: Lighting applications of rare-earth-doped silicon oxides, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by Pavesi, L. and Turan, R. (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 487.
44.Kovalev, D., Heckler, H., Polisski, G., and Koch, F.: Optical properties of Si nanocrystals. Phys. Status Solidi B 215, 871 (1999).
45.Goesele, U.: Shedding new light on silicon. Nat. Nanotechnol. 3, 134 (2008).
46.Borsella, E., D’Amato, R., Fabbri, F., Falconieri, M., Trave, E., Bello, V., Mattei, G., Nie, Y., and Wang, D.: On the role of non-bridging oxygen centers in the red luminescence emission from silicon nanocrystals. Phys. Status Solidi C 8, 974 (2011).
47.Ben-Chorin, M., Averboukh, B., Kovalev, D., Polisski, G., and Koch, F.: Influence of quantum confinement on the critical points of the band structure of Si. Phys. Rev. Lett. 77, 763 (1996).
48.Skuja, L.: The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2. J. Non-Cryst. Solids 179, 51 (1994).
49.Munekuni, S., Yamanaka, T., Shimogaichi, Y., Tohmon, R., Ohki, Y., Nagasawa, K., and Hama, Y.: Various types of nonbridging oxygen hole center in high-purity silica glass. J. Appl. Phys. 68, 1212 (1990).
50.Zyubin, A.S., Glinka, Y.D., Mebel, A.M., Lin, S.H., Hwang, L.P., and Chen, Y.T.: Red and near-infrared photoluminescence from silica-based nanoscale materials: Experimental investigation and quantum-chemical modeling. J. Chem. Phys. B 116, 281 (2002).
51.Pavesi, L. and Ceschini, M.: Stretched-exponential decay of the luminescence in porous silicon. Phys. Rev. B 48, 17625 (1993).
52.Jayatilleka, H., Diamare, D., Wojdak, M., Kenyon, A.J., Mokry, C.R., Simpson, P.J., Knights, A.P., Crowe, I., and Halsall, M.P.: Probing energy transfer in an ensemble of silicon nanocrystals. J. Appl. Phys. 110, 033522 (2011).
53.Tasciotti, E., Liu, X., Bhavane, R., Plant, K., Leonard, A., Price, B., Cheng, M.C., Decuzzi, P., Tour, J., Robertson, F., and Ferrari, M.: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3, 151 (2008).
54.Fotakis, G. and Timbrell, J.A.: In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 160, 171 (2006).
55.Zange, R., Li, Y., and Kissel, T.: Biocompatibility testing of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to a central poly(ethylene oxide) B block under in vitro conditions using different L929 mouse fibroblasts cell culture models. J. Controlled Release 56, 249 (1998).
56.Nordin, M., Wieslander, A., Martinson, E., and Kjellstrand, P.: Effects of exposure period of acetylsalicylic acid, paracetamol and isopropanol on L929 cytotoxicity. Toxicol. In Vitro 5, 449 (1991).
57.Fujioka, K., Hiruoka, M., Sato, K., Manabe, N., Myasaka, R., Hanada, S., Hoshimo, A., Tilley, R.D., Manome, Y., Hirakuri, K., and Yamamoto, K.: Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19, 1 (2008).
58.Bhattacharjee, S., de Haan, L.H.J., Evers, N.M., Jiang, X., Marcelis, A.T.M., Zuilhof, H., Rietjens, I.M.C.M., and Alink, G.M.: Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part. Fibre Toxicol. 7, 25 (2010).
59.Gu, X.L., Howell, S.B., and Sailor, M.J.: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 5, 3651 (2011).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed