Skip to main content Accessibility help
×
Home

Analysis of local grain boundary strengthening utilizing the extrinsic indentation size effect

  • Prasad Pramod Soman (a1), Erik G. Herbert (a1), Katerina E. Aifantis (a2) and Stephen A. Hackney (a1)

Abstract

The extrinsic indentation size effect (ISE) is utilized to analyze the depth-dependent hardness for Berkovich indentation of non-uniform dislocation distributions with one and two dimensional deformation gradients and is then extended to indentation results at grain boundaries. The role of the Berkovich pyramid orientation and placement relative to the grain boundary on extrinsic ISE is considered in terms of slip transmission at yield and plastic incompatibility during post-yield deformation. The results are interpreted using a local dislocation hardening mechanism originally proposed by Ashby, combined with the Hall–Petch equation. The Hall–Petch coefficient determined from the extrinsic ISE of the grain boundary is found to be consistent with the published values for pure Fe and mild steel. A simple, linear continuum strain gradient plasticity model is used to further analyze the results to include contributions from a non-uniform distribution in plastic strain and dislocation density.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: kaifantis@ufl.edu
b)e-mail: hackney@mtu.edu

Footnotes

Hide All
c)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Footnotes

References

Hide All
1.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).
2.Ngan, A.H.W. and Ng, H.P.: Indentation-induced damage of thin-films supported on substrates. In Advances in Fracture Research—10th International Congress on Fracture (Pergamon, Oxford, 2001).
3.Ashby, M.F.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 (1970).
4.Durst, F.K., Backes, B., and Goken, M.: Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 52, 1093 (2005).
5.Hou, X.D., Bushby, A.J., and Jennett, N.M.: Study of the interaction between the indentation size effect and Hall–Petch effect with spherical indenters on annealed polycrystalline copper. J. Phys. D: Appl. Phys. 41 (2008).
6.Voyiadjis, G.Z. and Yaghoobi, M.: Review of nanoindentation size effect: Experiments and atomistic simulation. Crystals 7, 321 (2017).
7.Wang, Z.: Influences of sample preparation on the indentation size effect and nanoindentation pop-in on nickel. Ph.D. dissertation, University of Tennessee, Knoxville, 2012. Available at: https://trace.tennessee.edu/utk_graddiss/1371.
8.Pharr, G.M., Herbert, E.G., and Gao, Y.: The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271 (2010).
9.McElhaney, K.W., Vlassak, J.J., and Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300 (1998).
10.Liu, Y. and Ngan, A.H.W.: Depth dependence of hardness in copper single crystals measured by nanoindentation. Scr. Mater. 44, 237 (2001).
11.Poole, W., Ashby, M.F., and Fleck, N.A.: Micro-hardness of annealed and work hardened Cu polycrystals. Scr. Mater. 4, 559564 (1996).
12.Backes, B., Huang, Y., Goken, M., and Durst, K.: The correlation between the internal material length scale and the microstructure in nanoindentation experiments and simulations using the conventional mechanism-based strain gradient plasticity theory. J. Mater. Res. 24, 1197 (2009).
13.Soman, P.P., Herbert, E.G., Aifantis, K.E., and Hackney, S.A.: Effect of processing on Nix–Gao bilinear indentation results obtained for high purity iron. MRS Adv. 3, 477 (2018).
14.Rester, M., Motz, C., and Pippan, R.: Microstructural investigation of the volume beneath nanoindentations in copper. Acta Mater. 55, 6427 (2007).
15.Jung, B-b., Lee, H-k., and Park, H-c.: Effect of grain size on the indentation hardness for polycrystalline materials by the modified strain gradient theory. Int. J. Solids Struct. 50, 2719 (2013).
16.Aifantis, K.E. and Ngan, A.H.W.: Modeling dislocation-grain boundary interactions through gradient plasticity and nanoindentation. Mater. Sci. Eng., A 459, 251 (2007).
17.Soer, W.A., Aifantis, K.E., and Hosson, J.T.M.D.: Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater. 53, 4665 (2005).
18.Aifantis, K.E., Deng, H., Shibata, H., Tsurekawa, H., Lejcek, S., and Hackney, S.A.: Interpreting slip transmission through mechanically induced interface energies: A Fe–3% Si case study. J. Mater. Sci. 54, 1831 (2019).
19.Taylor, G.: Plastic strain in metals. J. Inst. Met. 62, 307 (1938).
20.Vachhani, S.J., Doherty, R.D., and Kalidindi, S.R.: Studies of grain boundary regions in deformed polycrystalline aluminum using spherical nanoindentation. Int. J. Plast. 81, 87 (2016).
21.Yang, B. and Vehoff, H.: Dependence of nanohardness upon indentation size and grain size—A local examination of the interaction between dislocations and grain boundaries. Acta Mater. 55, 849 (2007).
22.Xiao, X., Terentyev, D., Chen, Q., Yua, L., Chen, L., Bakaev, A., and Duan, H.: The depth dependent hardness of bicrystals with dislocation transmission through grain boundaries: A theoretical model. Int. J. Plast. 90, 212 (2017).
23.Pathak, S., Michler, J., and Wasmer, K.: Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J. Mater. Sci. 47, 815 (2012).
24.Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326 (1984).
25.Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W.: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475 (1994).
26.Aifantis, E.C.: Exploring the applicability of gradient elasticity to certain micro/nano reliability problems. Microsyst. Technol. 15, 109 (2009).
27.Aifantis, K.E. and Willis, J.R.: Interfacial jump conditions in strain-gradient plasticity and relations of Hall–Petch type. In Proceedings of the Seventh U. S. National Congress of Applied Mechanics (June 24–26 Chania/Greece) (2004); p. 372.
28.Aifantis, K.E. and Willis, J.R.: The role of interfaces in enhancing the yield strength of composites and polycrystals. J. Mech. Phys. Solids 53, 1047 (2005).
29.Rogers, H.C.: The influence of hydrogen on the yield point in Fe. Acta Metall. 4, 114117 (1956).
30.Song, E.J., Suh, D-W., and Bhadeshia, H.K.D.H.: Theory for hydrogen desorption in ferritic steel. Comput. Mater. Sci. 39, 3644 (2013).
31.Lucas, B.N.: An Experimental Investigation of Creep and Viscoelastic Properties Using Depth Sensing Indentation Techniques, Materials Science and Engineering (University of Tennessee, Knoxville, 1997).
32.Pharr, G.M., Strader, J.H., and Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653666 (2009).
33.Merle, B., Maier-Kiener, V., and Pharr, G.M.: Influence of modulus-to-hardness ratio and harmonic parameters on continuous stiffness measurement during nanoindentation. Acta Mater. 134, 167176 (2017).
34.Herbert, E.G., Hackney, S.A., Dudney, N.J., and Phani, P.S.: Nanoindentation of high purity vapor deposited lithium films: The elastic modulus. J. Mater. Res. 33, 13351346 (2018).
35.Herbert, E.G., Sudharshan, P., and Johanns, K.E.: Nanoindentation of viscoelastic solids: A critical assessment of experimental methods. Curr. Opin. Solid State Mater. Sci. 19, 334339 (2015).
36.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 15641583 (1992).
37.Herbert, E.G., Hackney, S.A., Dudney, N.J., Thole, V., and Phani, P.S.: Nanoindentation of high purity vapor deposited lithium films: A mechanistic rationalization of diffusion-mediated flow. J. Mater. Res. 33, 13471360 (2018).
38.Samuels, L.E.: The nature of mechanically polished metal surfaces: The surface deformation produced by the abrasion and polishing of 70: 30 brass. J. Inst. Met. 85, 51 (1956).
39.Wilkinson, A.J. and Randman, D.: Determination of elastic strain fields and geometrically necessary dislocation distributions near nanoindents using electron back scatter diffraction. Philos. Mag. 90, 11591177 (2010).
40.Ruggles, T.: Characterization of geometrically necessary dislocation content with EBSD-based continuum dislocation microscopy. ProQuest Dissertation and Theses, Brigham Young University, Provo, Utah, 4392, 2015.
41.Remington, T.P., Ruestes, C.J., Bringa, E.M., Remington, B.A., Lu, C.H., Kad, B., and Meyers, M.A.: Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation. Acta Mater. 78, 378393 (2014).
42.Nes, E.: Recovery revisited. Acta Metall. Mater. 43, 2189 (1995).
43.Britton, T., Randman, D., and Wilkinson, A.: Nanoindentation study of slip transfer phenomenon at grain boundaries. J. Mater. Res. 24, 607 (2009).
44.Armstrong, R.W., Codd, I., Douthwaite, R.M., and Petch, N.J.: The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 4558 (1962).
45.Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747 (1951).
46.Petch, N.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).
47.Hansen, N.: The effect of grain size and strain on the tensile flow stress of aluminium at room temperature. Acta Metall. 25, 863 (1977).
48.Evers, L.P., Parks, D.M., Brekelmans, W.A.M., and Geers, M.G.D.: Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. J. Mech. Phys. Solids 50, 2403 (2002).
49.Wierzbanowski, K., Baczmanski, A., Lipinski, P., and Lodini, A.: Arch. Metall. Mater. 52, 77 (2007).
50.Ma, A. and Hartmaier, A.: On the influence of isotropic and kinematic hardening caused by strain gradients on the deformation behaviour of polycrystals. Philos. Mag. 94, 125 (2014).
51.Li, J.C.M.: Petch relation and grain boundary sources. Trans. Metall. Soc. AIME 227, 239 (1963).
52.Meakin, J. and Petch, N.J.: Report ASD-TDR-63-324, Symposium on the Role of Substructure in the Mechanical Behavior of Metals (ASD-7DR-63-324, Orlando, 1963); pp. 234251.
53.Kato, M.: Hall–Petch relationship and dislocation model for deformation of ultrafine-Grained and nanocrystalline metals. Mater. Trans. 55, 1924 (2014).
54.Conrad, H., Feuerstein, S., and Rice, L.: Effects of grain size on the dislocation density and flow stress of niobium. Mater. Sci. Eng. 2, 157168 (1967).
55.Conrad, H.: Effect of grain size on the lower yield and flow stress of iron and steel. Acta Metall. 11, 75 (1963).
56.Kocks, U.F.: Metall. Trans. 1, 1123 (1970).
57.Takeda, K., Nakada, N., Tsuchiyama, T., and Takaki, S.: Effect of interstitial elements on Hall–Petch coefficient of ferritic iron. ISIJ Int. 48, 1122 (2008).
58.Wei, X., Konstantinidis, A., Qi, C., and Aifantis, E.: Gradient plasticity used for modeling extrinsic and intrinsic size effects in the torsion of Au microwires. J. Mech. Behav. Mater. 25, 53 (2016).
59.Evans, A.G. and Hutchinson, J.W.: A critical assessment of theories of strain gradient plasticity. Acta Mater. 57, 1675 (2009).
60.Zhang, X. and Aifantis, K.E.: Examining the evolution of the internal length as a function of plastic strain. Mater. Sci. Eng., A 631, 27 (2015).
61.Feng, G. and Nix, W.D.: Indentation size effect in MgO. Scr. Mater. 51, 599 (2004).
62.Aifantis, K.E. and Willis, J.R.: Scale effects induced by strain-gradient plasticity and interfacial resistance in periodic and randomly heterogeneous media. Mech. Mater. 38, 702 (2006).
63.Sachs, G.: Zur Ableitung einer Fließbedingung. Z. Ver. Deutscher Ing. 72, 734 (1928).
64.Mokios, G. and Aifantis, E.C.: Gradient effects in micro-/nanoindentation. Mater. Sci. Technol. 28, 1072 (2012).
65.Stoelken, J.S. and Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109 (1998).
66.Niordson, C.F. and Hutchinson, J.W.: Basic strain gradient plasticity theories with application to constrained film deformation. J. Mech. Mater. Struct. 6, 395 (2011).
67.Engelen, R.A.B.: Plasticity-induced Damage in Metals: Nonlocal Modelling at Finite Strains (Technische Universiteit Eindhoven, Eindhoven, 2005).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed