Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T17:35:15.982Z Has data issue: false hasContentIssue false

Anelastic behavior of precursor-derived amorphous ceramics in the system Si–B–C–N

Published online by Cambridge University Press:  31 January 2011

Martin Christ
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universitát Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 5, 70569 Stuttgart, Germany
André Zimmermann
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universitát Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 5, 70569 Stuttgart, Germany
Fritz Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universitát Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 5, 70569 Stuttgart, Germany
Get access

Abstract

The objective of this paper is to report on the anelastic, i.e., reversible and time-dependent, deformation behavior of precursor-derived amorphous ceramics. Therefore compression experiments under constant and varying stresses up to 250 MPa were performed at a temperature of 1400 °C. In the stress change experiments anelasticity was observed. By comparison of both types of experiments, the anelastic strain rate was determined. It decreased inversely proportional to the time after the stress change and was independent of the preceding duration of the test. Furthermore, deviations from the deformation behavior expected according to the free-volume-model, which were observed in compression creep tests, could be explained by anelastic behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Riedel, R., Kienzle, A., Dressler, W., Ruwisch, L.M., Bill, J., and Aldinger, F., Nature 382, 796 (1996).CrossRefGoogle Scholar
2.Kamphowe, T.W., Weinmann, M., Bill, J., and Aldinger, F., Sil. Ind. 63, 159 (1998).Google Scholar
3.Bill, J. and Aldinger, F., Adv. Mater. 7, 775 (1995).CrossRefGoogle Scholar
4.Baldus, H-P. and Jansen, K., Angew. Chem. 109, 338 (1997); Angew. Chem. Int. Ed. Engl. 36, 328 (1997).CrossRefGoogle Scholar
5.Weinmann, M., Schuhmacher, J., Kummer, H., Prinz, S., Peng, J., Seifert, H.J., Christ, M., Müller, K., Bill, J., and Aldinger, F., Chem. Mater. 12, 623 (2000).CrossRefGoogle Scholar
6.Thurn, G., Canel, J., Bill, J., and Aldinger, F., J. Eur. Ceram. Soc. 19, 2317 (1999).CrossRefGoogle Scholar
7.An, L., Riedel, R., Konetschny, C., Kleebe, H-J., and Raj, R., J. Am. Ceram. Soc. 81, 1349 (1998).CrossRefGoogle Scholar
8.Baufeld, B., Gu, H., Bill, J., Wakai, F., and Aldinger, F., J. Eur. Ceram. Soc. 19, 2797 (1999).CrossRefGoogle Scholar
9.Thurn, G. and Aldinger, F., in Precursor-Derived Ceramics: Proceedings of the International Workshop on Grain Boundary Dynamics of Precursor-Derived Covalent Ceramics, Schloß Ringberg 1996, edited by Bill, J., Wakai, F., and Aldinger, F. (Wiley-VCH, Weinheim, Germany, 1999), p. 237.Google Scholar
10.Riedel, R., Ruwisch, L.M., An, L., and Raj, R., J. Am. Ceram. Soc. 81, 3341 (1998).CrossRefGoogle Scholar
11.Christ, M., Thurn, G., Weinmann, M., Bill, J., and Aldinger, F., J. Am. Ceram. Soc. 83, 3025 (2000).CrossRefGoogle Scholar
12.Christ, M., Thurn, G., Bill, J., and Aldinger, F., in Ceramics-Processing, Reliability, Tribology and Wear, Euromat, edited by Müller, G. (Wiley-VCH, Weinheim, Germany, 2000), p. 359.CrossRefGoogle Scholar
13.Cohen, M.H., and Turnbull, D., J. Chem. Phys. 31, 1164 (1959).CrossRefGoogle Scholar
14.Spaepen, F., in Physics of Defects, Les Houches Lectures XXXV, edited by Balian, R., Kléman, M., and Poirier, J-P., (North-Holland, Amsterdam, The Netherlands 1981), p. 134.Google Scholar
15.van den Beukel, A., Huizer, E., Mulder, A.L., and van der Zwaag, S., Acta Metall. 34, 483 (1986).CrossRefGoogle Scholar
16.McCrum, N.G., Anelastic and Dielectric Effects in Polymeric Solids (Dover Publications, St.Mineola, 1991).Google Scholar
17.Kienzle, A., Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany (1994).Google Scholar
18.Belyavsky, V.I., Csach, K., Khonik, V.A., Mikhailov, V.A., and Ocelik, V., J. Non-Cryst. Solids 241, 105 (1998).CrossRefGoogle Scholar