Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T20:21:25.132Z Has data issue: false hasContentIssue false

The application of the analytic embedded atom method to bcc metals and alloys

Published online by Cambridge University Press:  31 January 2011

A.M. Guellil
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801
J.B. Adams
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

Johnson and Oh have recently developed Embedded Atom Method potentials for bcc metals (Na, Li, K, V, Nb, Ta, Mo, W, Fe). The predictive power of these potentials was first tested by calculating vacancy formation and migration energies. Due to the results of these calculations, some of the functions were slightly modified to improve their fit to vacancy properties. The modified potentials were then used to calculate phonon dispersion curves, surface relaxations, surface energies, and thermal expansion. In addition, Johnson's alloy model, which works well for fcc metals, was applied to the bcc metals to predict dilute heats of solution.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nomura, M., Lee, S. Y., and Adams, J. B., J. Mater. Res. 6,1 (1991).CrossRefGoogle Scholar
2.Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
3.Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).Google Scholar
4.Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 45 (1984).Google Scholar
5.Ackland, G. J. and Thetford, R., Philos. Mag. A 56, 15 (1987).CrossRefGoogle Scholar
6.Ercolessi, F., Parinello, M., and Tosatti, E., Philos. Mag. A 58, 213 (1988).Google Scholar
7.Marchese, M., Jacucci, G., and Flynn, C. P., Philos. Mag. Lett. 57, 25 (1988).CrossRefGoogle Scholar
8.Ackland, G. J. and Finnis, M. W., Philos. Mag. A 54, 301 (1986).CrossRefGoogle Scholar
9.Johnson, R.A. and Oh, D.J., J. Mater. Res. 4, 1195 (1989).CrossRefGoogle Scholar
10.Johnson, R.A., Phys. Rev. B 39, 12554 (1989).Google Scholar
11.Feder, R., Phys. Rev. B 2, 828 (1970).Google Scholar
12.MacDonald, D. K. C., J. Chem. Phys. 21, L177 (1953).Google Scholar
13.Martin, D.L., Phys. Rev. 154, 571 (1967).CrossRefGoogle Scholar
14.Feder, R. and Charbnau, H.P., Phys. Rev. 149, 464 (1966).Google Scholar
15.Suezawa, M. and Kimura, H., Philos. Mag. 28, 901 (1973).Google Scholar
16.Ziegler, R. and Schaefer, H.E., Mater. Sci. Forum, 15–18 (Trans Tech. Publications, Ltd., Switzerland, 1987), p. 145.Google Scholar
17.Maier, K., Peo, M., Saile, B., Schaefer, H. E., and Seeger, A., Philos. Mag. A 40, 701 (1979).CrossRefGoogle Scholar
18.Maier, K., Metz, H., Herlach, D., and Schaefer, H. E., J. Nucl. Mater. 69–70, 589 (1978).Google Scholar
19.Rasch, K.D., Siegel, R.W., and Schultz, H, Philos. Mag. A 41, 91 (1980).CrossRefGoogle Scholar
20.DeSchepper, L., Segers, D., Knuyt, G., Dorikens-Vanpraet, L., Dorikens, M., Stals, L., and Moser, P., Phys. Lett. 95A, 121 (1983).CrossRefGoogle Scholar
21.Woo, C.H. and Frank, W., Radiat. Eff. 77, 49 (1983).CrossRefGoogle Scholar
22.Diehl, J., Merbold, U., and Weller, M., Scripta Metall. 11, 811 (1977).Google Scholar
23.Messer, R. and Noack, F., Appl. Phys. 6, 79 (1975).CrossRefGoogle Scholar
24.Mundy, J. N., Phys. Rev. B 3, 2431 (1971).CrossRefGoogle Scholar
25.Mundy, J.N., Miller, T.E., and Porte, R.J., Phys. Rev. B 3, 2445 (1971).CrossRefGoogle Scholar
26.Maier, K., Mehrer, H., and Rein, G., Z. Metallk. 70, 271 (1979).Google Scholar
27.Peart, R. F., J. Phys. Chem. Solids 26, 1853 (1965).CrossRefGoogle Scholar
28.Pelleg, J., Philos. Mag. 29, 383 (1974).CrossRefGoogle Scholar
29.Lundy, T. S. and McHargue, C. J., Trans. AIME 233, 243 (1965).Google Scholar
30.Macht, M.P., Frohberg, G., and Wever, H., Z. Metallk. 70, 209 (1979).Google Scholar
31.Ablitzer, D., Haeussler, J.P., and Sathyaraj, K.V., Philos. Mag. A 47, 515 (1983).CrossRefGoogle Scholar
32.Mundy, J.N., Rothman, S.J., Lam, N.Q., Hoff, H.A., and Nowicki, L.J., Phys. Rev. B 18, 6566 (1978).CrossRefGoogle Scholar
33.Pawel, R.E. and Lundy, T.S., Acta Metall. 17, 979 (1969).CrossRefGoogle Scholar
34.Weiler, D., Maier, K., and Mehrer, H., Diffusion in Metals and Alloys, edited by Kedves, F.J. and Beke, D.L. (Aedermannsdorf Trans. Tech. Publ., 1983), p. 342.Google Scholar
35.Pawel, R.E. and Lundy, T.S., J. Phys. Chem. Solids 26, 937 (1965).CrossRefGoogle Scholar
36.Einziger, R.E., Mundy, J.N., and Hoff, H.A., Phys. Rev. B 17, 440 (1978).CrossRefGoogle Scholar
37.Bubmann, W., Herzig, Ch., Hoff, H.A., and Mundy, J.N., Phys. Rev. B 23, 6216 (1981).Google Scholar
38.Ablitzer, D., Philos. Mag. 35, 1239 (1977).Google Scholar
39.Lundy, T.S., Winslow, F.R., Pawel, R.E., and McHargue, C.J., Trans. AIME. 233, 1533 (1965).Google Scholar
40.Bufflngton, F. S., Hirano, K., and Cohen, M., Acta Metall. 9, 434 (1961).CrossRefGoogle Scholar
41.Neumann, G. and Tolle, V., Philos. Mag. A 61, 563 (1990).Google Scholar
42.Harder, J.M. and Bacon, D.J., Philos. Mag. A 54, 651 (1986).Google Scholar
43.Tyson, W.R. and Miller, W.A., Surf. Sci. 62, 267 (1977).Google Scholar
44.Tyson, W. R., Can. Met. Quart. 14, 307 (1975).Google Scholar
45.Clarke, L.J., Surf. Sci. 91, 131 (1980).CrossRefGoogle Scholar
46.Jensen, V., Andersen, J. N., Nielsen, H. B., and Adams, D. L., Surf. Sci. 116, 66 (1982).Google Scholar
47.Adams, D.L., Nielsen, H.B., and Andersen, J.N., Phys. Scripta T4, 22 (1983).CrossRefGoogle Scholar
48.Marsh, F.S., Debe, M.K., and King, D.A., J. Phys. C13, 2799 (1980).Google Scholar
49.Feder, R. and Kirschner, J., Surf. Sci. 103, 75 (1981).Google Scholar
50.Titov, A. and Moritz, W., Surf. Sci. 123, L709 (1982).CrossRefGoogle Scholar
51.Legg, K.O., Jona, F., Jepsen, D.W., and Marcus, P.M., J. Phys. C10, 937 (1977).Google Scholar
52.Wang, Z.Q., Li, Y.S., Jona, F., and Marcus, P.M., Solid State Commun. 61, 623 (1987).CrossRefGoogle Scholar
53.Andersson, S., Pendry, J. B., and Echenique, P. M., Surf. Sci. 65, 539 (1977).Google Scholar
54.Adams, D. L. and Nielsen, H. B, Surf. Sci. 107, 305 (1981); Surf. Sci.116, 598 (1982).CrossRefGoogle Scholar
55.VanHove, M.A. and Tong, S.Y., Surf. Sci. 54, 91 (1979).CrossRefGoogle Scholar
56.Smith, R.J., Hennessy, C., Kim, M.W., Whang, C.N., Worthington, M., and Mingde, Xu, Phys. Rev. Lett. 58, 702 (1987).CrossRefGoogle Scholar
57.Shih, H.D., Jona, F., Bardi, U., and Marcus, P.M., J. Phys. C13, 3801 (1980).Google Scholar
58.Rebonato, R. and Broughton, J. Q., Philos. Mag. Lett. 55, 225 (1987).CrossRefGoogle Scholar
59.Daw, M.S. and Hatcher, R.D., Solid State Commun. 56, 697 (1985).CrossRefGoogle Scholar
60.Woods, A.D.B., Phys. Rev. 136, A781 (1964).Google Scholar
61.Woods, A.D.B. and Chen, S.H., Solid State Commun. 2, 233 (1964).Google Scholar
62.Chen, S.H. and Brockhouse, B.N., Solid State Commun. 2, 73 (1964).Google Scholar
63.Colella, R. and Batterman, B. W., Phys. Rev. B 1, 3913 (1970).Google Scholar
64.Nakagawa, Y. and Woods, A.D.B., Phys. Rev. Lett. 11, 271 (1963).Google Scholar
65.Minkiewicz, V.J., Shirane, G., and Nathans, R., Phys. Rev. 162, 528 (1967).CrossRefGoogle Scholar
66.Smith, H.G., Dolling, G., Nicklow, R.M., Vijaraghavan, P.R., and Wilkinson, M. K., Symposium on Neutron Inelastic Scattering (Vienna, 1968), p. 149.Google Scholar
67.Woods, A.D.B., Brockhouse, B.N., March, R.H., Stewart, A.T., and Bowers, R, Phys. Rev. 128, 1112 (1962).CrossRefGoogle Scholar
68.Cowley, R.A., Woods, A.D.B., and Dolling, G., Phys. Rev. 150, 487 (1966).Google Scholar
69.Foiles, S. M. and Adams, J. B., Phys. Rev. B 40, 5909 (1989).Google Scholar
70.Touloukian, Y. S., Kirby, R.K., Taylor, R.E., and Desai, P.D., Thermophysical Properties of Matter (Thermal Expansion — Metallic Elements and Alloys, Vol. 12) (Plenum Press, New York, 1975).Google Scholar
71.Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., and Kelley, K.K., Selected Values of the Thermodynamic Properties of Binary Alloys (ASM, Metals Park, OH, 1973).Google Scholar
72.Carlsson, A. E., in Defects in Materials, edited by Bristowe, P. D., Epperson, J. E., Griffith, J. E., and Lilliental-Weber, Z. (Mater. Res. Soc. Symp. Proc. 209, Pittsburgh, PA, 1991), p. 167.Google Scholar
73.Moriarty, J.A., Phys. Rev. B 42, 1609 (1990).CrossRefGoogle Scholar