Skip to main content Accessibility help

Assessing elastic property and solid-solution strengthening of binary Ni–Co, Ni–Cr, and ternary Ni–Co–Cr alloys from first-principles theory

  • Zhi-biao Yang (a1), Jian Sun (a1), Song Lu (a2) and Levente Vitos (a3)


The elastic properties and solid-solution strengthening (SSS) of the binary Ni–Co and Ni–Cr, and ternary Ni–Co–Cr alloys were investigated by the first-principles method. The results show that both Co and Cr increase lattice parameters of the binary alloys linearly. However, nonlinearity is found in compositional dependence of lattice parameters in the ternary Ni–Co–Cr alloys, that is, Co increases but decreases the lattice parameter at low and high Cr concentrations, respectively. Co increases the bulk, shear, and Young’s moduli (B, G, and E), while Cr increases B but decreases G and E in the binary alloys. In the ternary Ni–Co–Cr alloys, G and E have a similar compositional dependence to those in the binary alloys, except for B. Based on the Labusch model, the SSS parameter of Ni–Cr is larger than that of Ni–Co. The SSS effect increases significantly with Cr addition, especially at low Co concentrations in the ternary Ni–Co–Cr alloys. Meanwhile, it increases mildly with Co addition at low Cr concentrations but decreases with Co addition at high Cr concentrations.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Reed, R.C.: The Superalloys (Cambridge University Press, Cambridge, England, 2006).
2.Sims, C.T., Stoloff, N.S., and Hagel, W.C.: Superalloys II (John Wiley, New York, 1987); p. 97.
3.Jahangiri, M.R., Arabi, H., and Boutorabi, S.M.A.: Development of wrought precipitation strengthened IN939 superalloy. Mater. Sci. Eng. 28, 1470 (2012).
4.Fleischmann, E., Miller, M.K., Affeldt, E., and Glatzel, U.: Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys. Acta Metall 87, 350 (2015).
5.Gu, Y., Harada, H., Cui, C., Ping, D., Sato, A., and Fujioka, J.: New Ni–Co-base disk superalloys with higher strength and creep resistance. Scrip Metall 55, 815 (2006).
6.Christofidou, K.A., Jones, N.G., Hardy, M.C., and Stone, H.J.: The oxidation behaviour of alloys based on the Ni–Co–Al–Ti–Cr system. Oxid. Met. 85, 443 (2016).
7.Mishima, Y., Ochiai, S., Hamao, N., Yodogawa, M., and Suzuki, T.: Solid solution hardening of nickel-role of transition metal and B-subgroup solutes. Trans. Japan Inst. Met. 27, 656 (1986).
8.Roth, H.A., Davis, C.L., and Thomson, R.C.: Modeling solid solution strengthening in nickel alloys. Metall. Mater. Trans. A 28, 1329 (1997).
9.Davies, C.K.L., Sagar, V., and Stevens, R.N.: The effect of the stacking fault energy on the plastic deformation of polycristalline NiCo-alloys. Acta Metall. 21, 1343 (1973).
10.Akhtar, A. and Teghtsoonian, E.: Plastic deformation of Ni–Cr single crystal. Metall. Trans. 2, 2757 (1971).
11.Fleischer, R.L.: Substitutional solution hardening. Acta Metall. 11, 203209 (1963).
12.Labusch, R.: A statistical theory of solid solution hardening. Phys. Status Solidi 41, 659 (1970).
13.Gypen, L.A. and Deruyttere, A.: Multi-component solid solution hardening. J. Mater. Sci. 12, 1028 (1977).
14.Kadambi, S.B., Divya, V.D., and Ramamurty, U.: Evaluation of solid-solution hardening in several binary alloy systems using diffusion couples combined with nanoindentation. Metall. Mater. Trans. A 48, 4574 (2017).
15.Franke, O., Durst, K., and Göken, M.: Nanoindentation investigations to study solid solution hardening in Ni-based diffusion couples. J. Mater. Res. 24, 1127 (2009).
16.Zhao, J.C.: A combinatorial approach for efficient mapping of phase diagrams and properties. J. Mater. Res. 16, 1565 (2001).
17.Vitos, L., Abrikosov, I.A., and Johansson, B.: Anisotropic lattice distortions in random alloys from first principles theory. Phys. Rev. Lett. 87, 156401 (2001).
18.Vitos, L.: Total-energy method based on the exact muffin-tin orbitals theory. Phys. Rev. B 64, 167 (2001).
19.Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964).
20.Andersen, O.K., Jepsen, O., and Krier, G.: Exact Muffin-Tin Orbital Theory. In Lectures on Methods of Electronic Structure Calculations, edited by Kumar, V., Andersen, O.K., and Mookerjee, A. (World Scientific, Singapore, 1994); p. 63.
21.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
22.Gyorffy, B.: Coherent potential approximation for a nonoverlapping muffin-tin potential model of random substitutional alloys. Phys. Rev. B 5, 2382 (1972).
23.Tian, L.Y., Wang, G., Harris, J.S., Irving, D.L., Zhao, J., and Vitos, L.: Alloying effect on the elastic properties of refractory high-entropy alloys. Mater. Des. 114, 243 (2017).
24.Olsson, P., Abrikosov, I.A., Vitos, L., and Wallenius, J.: Ab initio formation energies of Fe–Cr alloys. J. Nucl. Mater 321, 84 (2003).
25.Vitos, L., Korzhavyi, P.A., and Johansson, B.: Stainless steel optimization from quantum mechanical calculations. Nat. Mater 2, 25 (2003).
26.Tian, F., Delczeg, L., Chen, N., Varga, L.K., Shen, J., and Vitos, L.: Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).
27.Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).
28.Győrffy, B.L., Pindor, A.J., Staunton, J., Stocks, G.M., and Winter, H.: A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F Met. Phys. 15, 1337 (1985).
29.Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 65, 349 (1952).
30.Shang, S.L., Saengdeejing, A., Mei, Z.G., Kim, D.E., Zhang, H., Ganeshan, S., Wang, Y., and Liu, Z.K.: First-principles calculations of pure elements: Equations of state and elastic stiffness constants. Comput. Mater. Sci 48, 813 (2010).
31.Guo, G.Y. and Wang, H.H.: Gradient-corrected density functional calculation of elastic constants of Fe, Co, and Ni in bcc, fcc, and hcp structures. Chin. J. Phys. 38, 949 (2000).
32.Ledbetter, H.M. and Reed, R.P.: Elastic properties of metals and alloys, I. Iron, nickel, and iron–nickel alloys. J. Phys. Chem. Ref. Data 2, 531 (1973).
33.Pearson, W.B. and Thompson, L.T.: The lattice spacings of nickel solid solutions. Can. J. Phys 35, 349 (1957).
34.Taylor, A. and Floyd, R.W.: The constitution of nickel-rich alloys of the nickel chromium titanium system. J. Inst. Metals 80, 577 (1952).
35.Levämäki, H., Punkkinen, M.P.J., Kokko, K., and Vitos, L.: Quasi-non-uniform gradient-level exchange-correlation approximation for metals and alloys. Phys. Rev. B 86, 201104 (2012).
36.Levämäki, H., Punkkinen, M.P.J., Kokko, K., and Vitos, L.: Flexibility of the quasi-non-uniform exchange-correlation approximation. Phys. Rev. B 89, 115107 (2014).
37.Kudrnovský, J., Drchal, V., and Bruno, P.: Magnetic properties of fcc Ni-based transition metal alloys. Phys. Rev. B 77, 224422 (2008).
38.Punkkinen, M., Kwon, S., Kollár, J., Johansson, B., and Vitos, L.: Compressive surface stress in magnetic transition metals. Phys. Rev. Lett. 106, 057202 (2011).
39.Olsson, P., Abrikosov, I.A., and Wallenius, J.: Electronic origin of the anomalous stability of Fe-rich bcc Fe–Cr alloys. Phys. Rev. B 73, 104416 (2006).
40.Yukawa, N., Hida, M., Imura, T., Mizuno, Y., and Kawamura, M.: Structure of chromium-rich Cr–Ni, Cr–Fe, Cr–Co, and Cr–Ni–Fe alloy particles made by evaporation in argon. Metall. Mater. Trans. B 3, 887 (1972).
41.Nurmi, E., Wang, G., Kokko, K., and Vitos, L.: Assessing the elastic properties and ductility of Fe–Cr–Al alloys from ab initio calculations. Philos. Mag. Ser. 96, 122 (2016).
42.Leamy, H.J. and Warlimont, H.: The elastic behaviour of Ni–Co alloys. Phys Status Solidi. B 37, 523 (1970).
43.Lenkkeri, J.T.: Measurements of elastic moduli of face-centred cubic alloys of transition metals. J. Phys. F: Metal Phys 11, 1991 (1981).
44.Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. Ser 7, 823 (1954).
45.Wu, Z., Gao, Y., and Bei, H.: Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Mater 120, 108 (2016).


Assessing elastic property and solid-solution strengthening of binary Ni–Co, Ni–Cr, and ternary Ni–Co–Cr alloys from first-principles theory

  • Zhi-biao Yang (a1), Jian Sun (a1), Song Lu (a2) and Levente Vitos (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed