Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T19:36:22.325Z Has data issue: false hasContentIssue false

Atomic theory of fracture of brittle materials: Application to covalent semiconductors

Published online by Cambridge University Press:  31 January 2011

K. Masuda-Jindo
Affiliation:
Department of Materials Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227, Japan
V.K. Tewary
Affiliation:
Materials Reliability Division, National Institute of Standards and Technology, Boulder, Colorado 80303
Robb Thomson
Affiliation:
Laboratory for Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

Using the lattice Green's function approach and LCAO (linear combination of atomic orbitals) electron theory, we investigate the atomistic configuration and lattice trapping of cracks in Si. The LCAO electron theory coupled to second order perturbation theory (SOP) has been used to derive explicit expressions for the bond breaking nonlinear forces between Si atoms. We calculate the cracked lattice Green's functions for a crack on the (111) plane and lying in the (110) direction. With the nonlinear forces acting in a cohesive region near the crack tips, the crack structure is then calculated. The calculated structure possesses a crack opening at the Griffith load which should allow penetration of typical external molecules to the crack tip at the Griffith loading. Other consequences for chemical reactions at the crack tip are discussed in the light of these results. The lattice trapping is low, only a few percent of the Griffith load.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Thomson, R., Solid State Phys. 39, 1 (1986).CrossRefGoogle Scholar
2.Hsieh, C. and Thomson, R., J. Appl. Phys. 44, 1051 (1973).Google Scholar
3.Esterling, D. M., J. Appl. Phys. 47, 486 (1976).CrossRefGoogle Scholar
4.Tewary, V. K., Adv. Phys. 22, 757 (1973).CrossRefGoogle Scholar
5.Thomson, R., Tewary, V. K., and Masuda-Jindo, K., J. Mater. Res. 2, 619 (1987).CrossRefGoogle Scholar
6.Masuda-Jindo, K., Tewary, V. K., and Thomson, R., J. Mater. Res. 2, p. 631.CrossRefGoogle Scholar
7. Unpublished work of Tian Decheng, of the International Centre for Theoretical Physics, Trieste, Italy, and Xu Yin-Hua, Li Guo-Ming, and Guan Wei-Ho of the Physics Dept., Wuhan University, Wuhan, China.Google Scholar
8.Decarpigny, J.N. and Lannoo, M., J. Phys. 34, 651 (1973).CrossRefGoogle Scholar
9.Lannoo, M., J. Phys. 34, p. 869.CrossRefGoogle Scholar
10.Harrison, W. A., Electronic Structure and Properties of Solids: The Physics of the Chemical Bond (Freeman, New York, 1980).Google Scholar
11.Baranowski, J.M., J. Phys. C 17, 6287 (1984).CrossRefGoogle Scholar
12.Talwar, D. N., Suh, K. S., and Ting, C. S., Philos. Mag. B 56, 593 (1987).CrossRefGoogle Scholar
13.Harrison, W. A.Phys. Rev. B 41, 6008 (1990).CrossRefGoogle Scholar
14.Hoffmann, R., J. Chem. Phys. 39, 1397 (1963).CrossRefGoogle Scholar
15.Haydock, R., Heine, V., and Kelly, M. J., J. Phys. C 5, 1845 (1972).CrossRefGoogle Scholar
16.Yong-Liang, W. and Lindefeit, U., Phys. Rev. B 37, 1320 (1988).CrossRefGoogle Scholar
17.Masuda-Jindo, K., Phys. Rev. B 41, 8407 (1990).CrossRefGoogle Scholar
18.Foo, E. N. and Davison, S. G., Surf. Sci. 55, 274 (1976).CrossRefGoogle Scholar
19.Kalkstein, D. and Soven, P., Surf. Sci. 26, 85 (1971).CrossRefGoogle Scholar
20.Foo, E. N. and Johnson, L. G., Surf. Sci. 55, 189 (1976).CrossRefGoogle Scholar
21.Vasil'ev, A.E., H'in, N.P., and Masterov, V.F., Sov. Phys. Semicond. 16, 701 (1982).Google Scholar
22.Einstein, T. L. and Schrieffer, J. R., Phys. Rev. B 7, 3629 (1973).CrossRefGoogle Scholar
23.Delerve, C. and Lannoo, M., Phys. Rev. B 38, 3966 (1988).CrossRefGoogle Scholar
24.Lefebvre, I., Lannoo, M., Allan, G., Ibanez, A., Fourcade, J., and Jumas, J.C., Phys. Rev. Lett. 59, 2471 (1987).CrossRefGoogle Scholar
25.Foo, E. N., Thorpe, M. F., and Weaire, D., Surf. Sci. 57, 323 (1976).CrossRefGoogle Scholar
26.Djafari-Rouhani, B., Dobrzynski, L., and Lannoo, M., Surf. Sci. 78, 24 (1978).CrossRefGoogle Scholar
27.Keating, P.N., Phys. Rev. 145, 637 (1966).CrossRefGoogle Scholar
28.Stillinger, F. and Weber, T., Phys. Rev. B 31, 5262 (1985).CrossRefGoogle Scholar
29.Sinclair, J., Philos. Mag. 31, 647 (1975).CrossRefGoogle Scholar
30.Thomson, R., J. Mater. Res. 5, 524 (1990).CrossRefGoogle Scholar