Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T13:28:07.672Z Has data issue: false hasContentIssue false

Atomistic simulation of crack propagation in single crystal tungsten under cyclic loading

Published online by Cambridge University Press:  17 April 2017

Xin-Tong Shu
Affiliation:
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Shi-fang Xiao*
Affiliation:
Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
Hui-qiu Deng
Affiliation:
Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
Lei Ma
Affiliation:
College of Physics and Electronic Science, Hunan University of Arts and Science, Changde 415000, China
Wangyu Hu*
Affiliation:
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
*
a) Address all correspondence to these authors. e-mail: shifangxiao@hnu.edu.cn
b) e-mail: wyuhu@hnu.edu.cn
Get access

Abstract

The propagation of a pre-existing center crack in single crystal tungsten under cyclic loading was examined by molecular dynamics (MD) simulations at various temperatures. The results indicated that the deformation mechanism and fracture behavior at crack tip were differences for variously oriented cracks. The [001](010) crack propagated as the form of the formation of slip, while the deformation mechanisms of [10−1](101) crack were blunting voids at 300 K. At higher temperature, many more slip systems were activated resulting in the change of mode of crack propagation. Simulated results showed that the effect of temperature on deformation mechanism and fracture behavior of [001](010) crack was more sensitive than that of [10−1](101) crack. Meanwhile, the influence of a 5〈310〉{110} model grain boundary (GB) on crack propagation was also discussed. Detailed analysis showed that the grain boundary resisted the crack growth by changing the deformation mechanisms and the path of crack propagation at crack tip before the crack reached the grain boundary, and had an important influence on the crack growth rate.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Susan B. Sinnott

References

REFERENCES

Cheng, Y., Mrovec, M., and Gumbsch, P.: Crack nucleation at the Σ9(221) symmetrical tilt grain boundary in tungsten. Mater. Sci. Eng., A 483(4), 329 (2008).CrossRefGoogle Scholar
Zhang, Y., Ganeev, A.V., Wang, J.T., Liu, J.Q., and Alexandrov, I.V.: Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity. Mater. Sci. Eng., A 503, 37 (2009).CrossRefGoogle Scholar
Mathaudhu, S.N., deRosset, A.J., Hartwig, K.T., and Kecskes, L.J.: Microstructures and recrystallization behavior of severely hot-deformed tungsten. Mater. Sci. Eng., A 503, 28 (2009).CrossRefGoogle Scholar
Alfonso, A., Juul Jensen, D., Luo, G.N., and Pantleon, W.: Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150–1350 °C. J. Nucl. Mater. 455, 591 (2014).CrossRefGoogle Scholar
Alfonso, A., Juul Jensen, D., Luo, G.N., and Pantleon, W.: Thermal stability of a highly-deformed warm-rolled tungsten plate in the temperature range 1100–1250 °C. Fusion Eng. Des. 98–99, 1924 (2015).CrossRefGoogle Scholar
Tan, X.Y., Luo, L.M., Lu, Z.L., Luo, G.N., Zan, X., Cheng, J.G., and Wu, Y.C.: Development of tungsten as plasma-facing materials by doping tantalum carbide nanoparticles. Powder Technol. 269, 437 (2015).CrossRefGoogle Scholar
Potirniche, G.P., Hearndon, J.L., Horstemeyer, M.F., and Ling, X.W.: Lattice orientation effects on void growth and coalescence in fcc single crystals. Int. J. Plast. 22(5), 921 (2006).CrossRefGoogle Scholar
Guo, Y.F. and Zhao, D.L.: Atomistic simulation of structure evolution at a crack tip in bcc-iron. Mater. Sci. Eng. 448(1–2), 281 (2007).CrossRefGoogle Scholar
Tang, T., Kim, S., and Horstemeyer, M.F.: Fatigue crack growth in magnesium single crystals under cyclic loading: Molecular dynamics simulation. Comput. Mater. Sci. 48(2), 426 (2010).CrossRefGoogle Scholar
Xie, H., Yu, T., Yin, F., and Tang, C.: The effects of crack orientation on the twin formation from the crack tip in γ-Ni3Al. Mater. Sci. Eng., A 580, 99 (2013).CrossRefGoogle Scholar
Ma, L., Xiao, S.F., Deng, H.Q., and Hu, W.Y.: Atomic simulation of fatigue crack propagation in Ni3Al. Appl. Phys. A 118, 1399 (2015).CrossRefGoogle Scholar
Lee, H. and Tomar, V.: Understanding effect of grain boundaries in the fracture behavior of polycrystalline tungsten under mode-I loading. J. Eng. Mater. Technol. 134(3), 031010 (2012).CrossRefGoogle Scholar
Ma, L., Xiao, S.F., Deng, H.Q., and Hu, W.Y.: Molecular dynamics simulation of fatigue crack propagation in bcc iron under cyclic loading. Int. J. Fatigue 68, 253 (2014).CrossRefGoogle Scholar
Potirniche, G.P., Horstemeyer, M.F., Jelinek, B., and Wagner, G.J.: Fatigue damage in nickel and copper single crystals at nanoscale. Int. J. Fatigue 27, 1179 (2005).CrossRefGoogle Scholar
Machová, A., Pokluda, J., Uhnáková, A., and Hora, P.: 3D atomistic studies of fatigue behaviour of edge crack (001) in bcc iron loaded in mode I and II. Int. J. Fatigue 66, 11 (2014).CrossRefGoogle Scholar
Zhao, K.J., Chen, C.Q., Shen, Y.P., and Lu, T.J.: Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper. Comput. Mater. Sci. 46(3), 749 (2009).CrossRefGoogle Scholar
Gaganidze, E., Rupp, D., and Aktaa, J.: Fracture behaviour of polycrystalline tungsten. J. Nucl. Mater. 446(s1–3), 240 (2014).CrossRefGoogle Scholar
Yu, X., Gou, F., Li, B., and Zhang, N.: Numerical study of the effect of hydrogen on the crack propagation behavior of single crystal tungsten. Fusion Eng. Des. 89, 1096 (2014).CrossRefGoogle Scholar
Zhang, Y., Zhang, F.C., Qian, L.H., and Wang, T.S.: Atomic-scale simulation of iron phase boundary affecting crack propagation using molecular dynamics method. Comput. Mater. Sci. 50(5), 1754 (2011).CrossRefGoogle Scholar
Online source: National Institute of Standards and Technology: 2017. Available at: http://www.ctcms.nist.gov/potentials/ (accessed 05 March 2016).Google Scholar
Han, S., Zepeda-Ruiz, L.A., Ackland, G.J., Car, R., and Srolovitz, D.J.: Interatomic potential for vanadium suitable for radiation damage simulations. J. Appl. Phys. 93(6), 3328 (2003).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Kittel, C.: Introduction to Solid State Physics, 7th ed. (Wiley Press, New York, 1996); p. 57.Google Scholar
Maier, K., Peo, M., Saile, B., Schaefer, H.E., and Seeger, A.: High-temperature positron annihilation and vacancy formation in refractory metals. Philos. Mag. A 40, 701 (1979).CrossRefGoogle Scholar
Wollenberger, H.J.: Point defects. Phys. Metall. 2, 1139 (1983).Google Scholar
Bolef, D.I. and De Klerk, J.: Elastic constants of single-crystal Mo and W between 77° and 500° K. J. Appl. Phys. 33(7), 2311 (1962).CrossRefGoogle Scholar
Bonny, G., Terentyev, D., Bakaev, A., Grigorev, P., and Van Neck, D.: Many-body central force potentials for tungsten. Modell. Simul. Mater. Sci. Eng. 22(22), 053001 (2014).CrossRefGoogle Scholar
Tyson, W.R. and Miller, W.A.: Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci. 62(1), 267 (1977).CrossRefGoogle Scholar
Bachelet, G.B., Hamann, D.R., and Schluter, M.: Pseudopotentials that work: From H to Pu. Phys. Rev. B: Condens. Matter Mater. Phys. 26, 4199 (1982).CrossRefGoogle Scholar
Giusepponi, S. and Celino, M.: The ideal tensile strength of tungsten and tungsten alloys by first-principles calculations. J. Nucl. Mater. 435, 52 (2013).CrossRefGoogle Scholar
Chen, Z., Kecskes, L.J., Zhu, K., and Wei, Q.: Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten. J. Nucl. Mater. 481, 190 (2016).CrossRefGoogle Scholar
Liu, Y.L., Zhou, H.B., Zhang, Y., Jin, S., and Lu, G.H.: The ideal tensile strength and deformation behavior of a tungsten single crystal. Nucl. Instrum. Methods Phys. Res. 267(18), 3282 (2009).CrossRefGoogle Scholar
Kelly, A. and Macmillan, N.H.: Strong Solids, Vol. 1015, 3rd ed. (Clarendon Press, Oxford, 1986).Google Scholar
Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010).CrossRefGoogle Scholar
Honeycutt, J.D. and Andersen, H.C.: Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J. Phys. Chem. 91(19), 4950 (1987).CrossRefGoogle Scholar
Gludovatz, B., Wurster, S., Hoffmann, A., and Pippan, R.: A study into the crack propagation resistance of pure tungsten. Eng. Fract. Mech. 100, 76 (2013).CrossRefGoogle Scholar
Hull, D., Beardmore, P., and Valintine, A.P.: Crack propagation in single crystals of tungsten. Philos. Mag. 12(119), 1021 (1965).CrossRefGoogle Scholar
Hirth, J.P. and Lothe, J.: Theory of Dislocations (Wiley-Interscience Press, New York, 1982); p. 764.Google Scholar
Nishimura, K. and Miyazaki, N.: Molecular dynamics simulation of crack growth under cyclic loading. Comput. Mater. Sci. 31, 269 (2014).CrossRefGoogle Scholar
Wang, P., Xu, J.G., Zhang, Y.G., and Song, H.Y.: Molecular dynamics simulation of effect of grain on mechanical properties of nano-polycrystal alpha-Fe. Acta Phys. Sin. 65, 236201 (2016).CrossRefGoogle Scholar
Yan, L. and Fan, J.K.: In situ SEM study of fatigue crack initiation and propagation behavior in 2524 aluminum alloy. Mater. Des. 110, 592 (2016).CrossRefGoogle Scholar