Skip to main content
×
Home

Atomistic simulation of crack propagation in single crystal tungsten under cyclic loading

  • Xin-Tong Shu (a1), Shi-fang Xiao (a2), Hui-qiu Deng (a2), Lei Ma (a3) and Wangyu Hu (a1)...
Abstract
Abstract

The propagation of a pre-existing center crack in single crystal tungsten under cyclic loading was examined by molecular dynamics (MD) simulations at various temperatures. The results indicated that the deformation mechanism and fracture behavior at crack tip were differences for variously oriented cracks. The [001](010) crack propagated as the form of the formation of slip, while the deformation mechanisms of [10−1](101) crack were blunting voids at 300 K. At higher temperature, many more slip systems were activated resulting in the change of mode of crack propagation. Simulated results showed that the effect of temperature on deformation mechanism and fracture behavior of [001](010) crack was more sensitive than that of [10−1](101) crack. Meanwhile, the influence of a 5〈310〉{110} model grain boundary (GB) on crack propagation was also discussed. Detailed analysis showed that the grain boundary resisted the crack growth by changing the deformation mechanisms and the path of crack propagation at crack tip before the crack reached the grain boundary, and had an important influence on the crack growth rate.

Copyright
Corresponding author
a) Address all correspondence to these authors. e-mail: shifangxiao@hnu.edu.cn
b) e-mail: wyuhu@hnu.edu.cn
Footnotes
Hide All

Contributing Editor: Susan B. Sinnott

Footnotes
References
Hide All
1. Cheng Y., Mrovec M., and Gumbsch P.: Crack nucleation at the Σ9(221) symmetrical tilt grain boundary in tungsten. Mater. Sci. Eng., A 483(4), 329 (2008).
2. Zhang Y., Ganeev A.V., Wang J.T., Liu J.Q., and Alexandrov I.V.: Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity. Mater. Sci. Eng., A 503, 37 (2009).
3. Mathaudhu S.N., deRosset A.J., Hartwig K.T., and Kecskes L.J.: Microstructures and recrystallization behavior of severely hot-deformed tungsten. Mater. Sci. Eng., A 503, 28 (2009).
4. Alfonso A., Juul Jensen D., Luo G.N., and Pantleon W.: Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150–1350 °C. J. Nucl. Mater. 455, 591 (2014).
5. Alfonso A., Juul Jensen D., Luo G.N., and Pantleon W.: Thermal stability of a highly-deformed warm-rolled tungsten plate in the temperature range 1100–1250 °C. Fusion Eng. Des. 98–99, 1924 (2015).
6. Tan X.Y., Luo L.M., Lu Z.L., Luo G.N., Zan X., Cheng J.G., and Wu Y.C.: Development of tungsten as plasma-facing materials by doping tantalum carbide nanoparticles. Powder Technol. 269, 437 (2015).
7. Potirniche G.P., Hearndon J.L., Horstemeyer M.F., and Ling X.W.: Lattice orientation effects on void growth and coalescence in fcc single crystals. Int. J. Plast. 22(5), 921 (2006).
8. Guo Y.F. and Zhao D.L.: Atomistic simulation of structure evolution at a crack tip in bcc-iron. Mater. Sci. Eng. 448(1–2), 281 (2007).
9. Tang T., Kim S., and Horstemeyer M.F.: Fatigue crack growth in magnesium single crystals under cyclic loading: Molecular dynamics simulation. Comput. Mater. Sci. 48(2), 426 (2010).
10. Xie H., Yu T., Yin F., and Tang C.: The effects of crack orientation on the twin formation from the crack tip in γ-Ni3Al. Mater. Sci. Eng., A 580, 99 (2013).
11. Ma L., Xiao S.F., Deng H.Q., and Hu W.Y.: Atomic simulation of fatigue crack propagation in Ni3Al. Appl. Phys. A 118, 1399 (2015).
12. Lee H. and Tomar V.: Understanding effect of grain boundaries in the fracture behavior of polycrystalline tungsten under mode-I loading. J. Eng. Mater. Technol. 134(3), 031010 (2012).
13. Ma L., Xiao S.F., Deng H.Q., and Hu W.Y.: Molecular dynamics simulation of fatigue crack propagation in bcc iron under cyclic loading. Int. J. Fatigue 68, 253 (2014).
14. Potirniche G.P., Horstemeyer M.F., Jelinek B., and Wagner G.J.: Fatigue damage in nickel and copper single crystals at nanoscale. Int. J. Fatigue 27, 1179 (2005).
15. Machová A., Pokluda J., Uhnáková A., and Hora P.: 3D atomistic studies of fatigue behaviour of edge crack (001) in bcc iron loaded in mode I and II. Int. J. Fatigue 66, 11 (2014).
16. Zhao K.J., Chen C.Q., Shen Y.P., and Lu T.J.: Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper. Comput. Mater. Sci. 46(3), 749 (2009).
17. Gaganidze E., Rupp D., and Aktaa J.: Fracture behaviour of polycrystalline tungsten. J. Nucl. Mater. 446(s1–3), 240 (2014).
18. Yu X., Gou F., Li B., and Zhang N.: Numerical study of the effect of hydrogen on the crack propagation behavior of single crystal tungsten. Fusion Eng. Des. 89, 1096 (2014).
19. Zhang Y., Zhang F.C., Qian L.H., and Wang T.S.: Atomic-scale simulation of iron phase boundary affecting crack propagation using molecular dynamics method. Comput. Mater. Sci. 50(5), 1754 (2011).
20. Online source: National Institute of Standards and Technology: 2017. Available at: http://www.ctcms.nist.gov/potentials/ (accessed 05 March 2016).
21. Han S., Zepeda-Ruiz L.A., Ackland G.J., Car R., and Srolovitz D.J.: Interatomic potential for vanadium suitable for radiation damage simulations. J. Appl. Phys. 93(6), 3328 (2003).
22. Plimpton S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).
23. Kittel C.: Introduction to Solid State Physics, 7th ed. (Wiley Press, New York, 1996); p. 57.
24. Maier K., Peo M., Saile B., Schaefer H.E., and Seeger A.: High-temperature positron annihilation and vacancy formation in refractory metals. Philos. Mag. A 40, 701 (1979).
25. Wollenberger H.J.: Point defects. Phys. Metall. 2, 1139 (1983).
26. Bolef D.I. and De Klerk J.: Elastic constants of single-crystal Mo and W between 77° and 500° K. J. Appl. Phys. 33(7), 2311 (1962).
27. Bonny G., Terentyev D., Bakaev A., Grigorev P., and Van Neck D.: Many-body central force potentials for tungsten. Modell. Simul. Mater. Sci. Eng. 22(22), 053001 (2014).
28. Tyson W.R. and Miller W.A.: Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci. 62(1), 267 (1977).
29. Bachelet G.B., Hamann D.R., and Schluter M.: Pseudopotentials that work: From H to Pu. Phys. Rev. B: Condens. Matter Mater. Phys. 26, 4199 (1982).
30. Giusepponi S. and Celino M.: The ideal tensile strength of tungsten and tungsten alloys by first-principles calculations. J. Nucl. Mater. 435, 52 (2013).
31. Chen Z., Kecskes L.J., Zhu K., and Wei Q.: Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten. J. Nucl. Mater. 481, 190 (2016).
32. Liu Y.L., Zhou H.B., Zhang Y., Jin S., and Lu G.H.: The ideal tensile strength and deformation behavior of a tungsten single crystal. Nucl. Instrum. Methods Phys. Res. 267(18), 3282 (2009).
33. Kelly A. and Macmillan N.H.: Strong Solids, Vol. 1015, 3rd ed. (Clarendon Press, Oxford, 1986).
34. Stukowski A.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010).
35. Honeycutt J.D. and Andersen H.C.: Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J. Phys. Chem. 91(19), 4950 (1987).
36. Gludovatz B., Wurster S., Hoffmann A., and Pippan R.: A study into the crack propagation resistance of pure tungsten. Eng. Fract. Mech. 100, 76 (2013).
37. Hull D., Beardmore P., and Valintine A.P.: Crack propagation in single crystals of tungsten. Philos. Mag. 12(119), 1021 (1965).
38. Hirth J.P. and Lothe J.: Theory of Dislocations (Wiley-Interscience Press, New York, 1982); p. 764.
39. Nishimura K. and Miyazaki N.: Molecular dynamics simulation of crack growth under cyclic loading. Comput. Mater. Sci. 31, 269 (2014).
40. Wang P., Xu J.G., Zhang Y.G., and Song H.Y.: Molecular dynamics simulation of effect of grain on mechanical properties of nano-polycrystal alpha-Fe. Acta Phys. Sin. 65, 236201 (2016).
41. Yan L. and Fan J.K.: In situ SEM study of fatigue crack initiation and propagation behavior in 2524 aluminum alloy. Mater. Des. 110, 592 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 50 *
Loading metrics...

Abstract views

Total abstract views: 217 *
Loading metrics...

* Views captured on Cambridge Core between 17th April 2017 - 23rd November 2017. This data will be updated every 24 hours.