Skip to main content

Biaxially stretchable transparent conductors that use nanowire networks

  • Xinning Ho (a1), Chek Kweng Cheng (a1), Ju Nie Tey (a1) and Jun Wei (a1)

Stretchable transparent conductors are required for flexible and wearable electronics. This study demonstrates biaxially stretchable transparent conductors that use silver nanowire networks. The use of buckled nanowire networks has previously been reported to lend stretchability to the transparent conductor in a single axis. However, a nanowire network that is prestrained and then buckled out-of-plane biaxially shows a deterioration of the electrical conductivity after a single cycle of stretching and releasing the strain uniaxially. This has been attributed to the loss of good electrical contact between the nanowires. By hot pressing the out-of-plane buckled nanowires to obtain an in-plane wavy nanowire network with good wire-to-wire junctions, a biaxially stretchable transparent conductor that maintains good electrical conductivity with stretching up to 10% is demonstrated. The methods of prestraining the nanowire network to achieve out-of-plane buckled nanowires and hot pressing the out-of-plane buckled nanowires to obtain an in-plane wavy nanowire network with fused junctions are expected to be practical for other classes of percolative networks based on one-dimensional (1D) materials used in flexible and stretchable applications.

Corresponding author
a)Address all correspondence to these authors. e-mail:
Hide All
1.Chun K-Y., Oh Y., Rho J., Ahn J-H., Kim Y-J., Choi H.R., and Baik S.: Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853 (2010).
2.Kim K.H., Vural M., and Islam M.F.: Single-walled carbon nanotube aerogel-based elastic conductors. Adv. Mater. 23, 2865 (2011).
3.Huang Y.Y. and Terentjev E.M.: Tailoring the electrical properties of carbon nanotubes-polymer composite. Adv. Funct. Mater. 20, 4062 (2010).
4.Liu K., Sun Y., Liu P., Lin X., Fan S., and Jiang K.: Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 21, 2721 (2011).
5.Shin M.K., Oh J., Lima M., Kozlov M.E., Kim S.J., and Baughman R.H.: Elastomeric conductive composites based on carbon nanotube forests. Adv. Mater. 22, 2663 (2010).
6.Huang S., Li L., Yang Z., Zhang L., Saiyin H., Chen T., and Peng H.: A new and general fabrication of an aligned carbon nanotube/polymer film for electrode applications. Adv. Mater. 23, 4707 (2011).
7.Sekitani T., Noguchi Y., Hata K., Fukushima T., Aida T., and Someya T.: A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468 (2008).
8.Yamada T., Hayamizu Y., Yamamoto Y., Yomogida Y., Izadi-Najafabadi A., Futaba D.N., and Hata K.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296 (2011).
9.Zhang Y., Sheehan C.J., Zhai J., Zou G., Luo H., Xiong J., Zhu Y.T., and Jia Q.X.: Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22, 3027 (2010).
10.Zhu Y. and Xu F.: Buckling of aligned carbon nanotubes as stretchable conductors: A new manufacturing strategy. Adv. Mater. 24, 1073 (2012).
11.Xu F., Wang X., Zhu Y., and Zhu Y.: Wavy ribbons of carbon nanotubes for stretchable conductors. Adv. Funct. Mater. 22, 1279 (2012).
12.Kim R-H., Bae M-H., Kim D.G., Cheng H., Kim B.H., Kim D-H., Li M., Wu J., Du F., Kim H-S., Kim S., Estrada D., Hong S.W., Huang Y., Pop E., and Rogers J.A.: Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881 (2011).
13.Kim K.S., Zhao Y., Jang H., Lee S.Y., Kim J.M., Kim K.S., Ahn J-H., Kim P., Choi J-Y., and Hong B.H.: Large scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009).
14.Lipomi D.J., Tee B.C-K., Vosgueritchian M., and Bao Z.: Stretchable organic solar cells. Adv. Mater. 23, 1771 (2011).
15.Lipomi D.J., Lee J.A., Vosgueritchian M., Tee B.C-K., Bolander J.A., and Bao Z.: Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem. Mater. 24, 373 (2012).
16.Lee P., Lee J., Lee H., Yeo J., Hong S., Nam K.H., Lee D., Lee S.S., and Ko S.H.: Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326 (2012).
17.Akter T. and Kim W.S.: Reversible stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl. Mater. Interfaces 4, 1855 (2012).
18.Lee J-Y., Conner S.T., Cui Y., and Peumans P.: Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689 (2008).
19.Scardaci V., Coull R., Lyons P.E., Rickard D., and Coleman J.N.: Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small 7, 2621 (2011).
20.De S., Higgins T.M., Lyons P.E., Doherty E.M., Nirmalraj P.N., Blau W.J., Boland J.J., and Coleman J.N.: Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 3, 1767 (2009).
21.Hu L., Kim H.S., Kim J-Y., Peumans P., and Cui Y.: Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955 (2010).
22.Ho X., Tey J., Liu W., Cheng C.K., and Wei J.: Biaxially stretchable silver nanowire transparent conductors. J. Appl. Phys. 113, 044311 (2013).
23.Lee M-S., Lee K., Kim S-Y., Lee H., Park J., Choi K-H., Kim H-K., Kim D-G., Lee D-Y., Nam S.W., and Park J-U.: High-performance, transparent and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13, 2814 (2013).
24.Zhu Y., Sun Z., Yan Z., Jin Z., and Tour J.M.: Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano 5, 6472 (2011).
25.Hu L., Wu H., and Cui Y.: Metal nanogrids, nanowires and nanofibers for transparent electrodes. MRS Bull. 36, 760 (2011).
26.Catrysse P.B. and Fan S.H.: Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. Nano Lett. 10, 2944 (2010).
27.Ho X., Lu H., Liu W., Tey J., Cheng C.K., Kok E., and Wei J.: Electrical and optical properties of hybrid transparent electrodes that use metal grids and graphene films. J. Mater. Res. 28, 620 (2013).
28.Lu N., Wang S., Suo Z., and Vlassak J.: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).
29.Ho X. and Wei J.: Films of carbon nanomaterials for transparent conductors. Materials 6, 2155 (2013).
30.Zhu Y., Qin Q., Xu F., Fan F., Ding Y., Zhang T., Wiley B.J., and Wang Z.L.: Size effects on elasticity, yielding and fracture of silver nanowires: In situ experiments. Phys. Rev. B 85, 045443 (2012).
31.Yoo J.H., Oh S.I., and Jeong M.S.: The enhanced elastic modulus of nanowires associated with multitwins. J. Appl. Phys. 107, 094316 (2010).
32.Gunawidjaja R., Ko H., Jiang C., and Tsukruk V.V.: Buckling behavior of highly oriented silver nanowire encapsulated within layer-by-layer films. Chem. Mater. 19, 2007 (2007).
33.Wu J., Zang J., Rathmell A.R., Zhao X., and Wiley B.J.: Reversible sliding in networks of nanowires. Nano Lett. 13, 2381 (2013).
34.Garnett E.C., Cai W., Cha J.J., Mahmood F., Connor S.T., Christoforo M.G., Cui Y., McGehee M.D., and Brongersma M.L.: Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241 (2012).
35.Lee J., Lee I., Kim T-S., and Lee J-Y.: Efficient welding of silver nanowire networks without post-processing. Small 9, 2887 (2013).
36.Kang B., Yun J., Kim S-G., and Yang M.: Adaptive fabrication of a flexible electrode by optically self-selected interfacial adhesion and its application to highly transparent and conductive film. Small 9, 2111 (2013).
37.Tokuno T., Nogi M., Karakawa M., Jiu J., Nge T.T., Aso Y., and Suganuma K.: Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4, 1215 (2011).
38.Rogers J.A., Someya T., and Huang Y.: Materials and mechanics for stretchable electronics. Science 327, 1603 (2010).
39.Kim D-H., Xiao J., Song J., Huang Y., and Rogers J.A.: Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108 (2010).
40.Zhang Y., Xu S., Fu H., Lee J., Su J., Hwang K-C., Rogers J.A., and Huang Y.: Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter. 9, 8062 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 7
Total number of PDF views: 62 *
Loading metrics...

Abstract views

Total abstract views: 227 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.