Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T02:59:22.849Z Has data issue: false hasContentIssue false

Binder-free freestanding flexible Si nanoparticle–multi-walled carbon nanotube composite paper anodes for high energy Li-ion batteries

Published online by Cambridge University Press:  11 January 2018

Kang Yao*
Affiliation:
Materials Science & Engineering, Florida State University, Tallahassee, Florida 32310, USA; Aero-propulsion, Mechatronics and Energy Center (AME), Florida State University, Tallahassee, Florida 32310, USA; and High-Performance Materials Institute (HPMI), Florida State University, Tallahassee, Florida 32310, USA
Jim P. Zheng
Affiliation:
Materials Science & Engineering, Florida State University, Tallahassee, Florida 32310, USA; Aero-propulsion, Mechatronics and Energy Center (AME), Florida State University, Tallahassee, Florida 32310, USA; Center for Advanced Power Systems (CAPS), Florida State University, Tallahassee, Florida 32310, USA; and Department of Electrical & Computer Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, Florida 32310, USA
Zhiyong Liang
Affiliation:
Materials Science & Engineering, Florida State University, Tallahassee, Florida 32310, USA; High-Performance Materials Institute (HPMI), Florida State University, Tallahassee, Florida 32310, USA; and Department of Industrial and Manufacturing Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, Florida 32310, USA
*
a)Address all correspondence to this author. e-mail: ky12@my.fsu.edu
Get access

Abstract

Si nanoparticles and multi-walled carbon nanotubes (MWNTs) were combined using the simple, inexpensive, and scalable approach involving ultrasonication and positive-pressure filtration to generate binder-free freestanding flexible Si–MWNT (Si–MW) composite paper anodes for Li-ion batteries. Through controlling the Si/carbon nanotube (CNT) weight ratio, the composite with 3:2 Si/CNT ratio exhibited the optimal balance between the high capacity of SiNPs and high conductivity and structural stabilization quality of MWNTs, leading to high rate capability as well as specific capacity and cyclability surpassing the conventional slurry-cast SiNP electrode using binder and current collector and other complicated freestanding Si/carbon composite designs. After 100 cycles, our electrode retained a capacity of 1170 mA h/g at 100 mA/g and 750 mA h/g at 500 mA/g. Moreover, a different electrolyte composition enabled a reversible capacity of 1300 mA h/g at 100 mA/g after 100 cycles. The freestanding feature of our electrodes is promising for enhanced energy density of Li-ion cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sung-Yoon Chung

References

REFERENCES

Szczech, J.R. and Jin, S.: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56 (2011).CrossRefGoogle Scholar
Wu, H. and Cui, Y.: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414 (2012).Google Scholar
Ma, D., Cao, Z., and Hu, A.: Si-based anode materials for Li-ion batteries: A mini review. Nano-Micro Lett. 6, 347 (2014).CrossRefGoogle ScholarPubMed
Alaboina, P.K., Cho, J-S., and Cho, S-J.: Engineering and optimization of silicon–iron–manganese nanoalloy electrode for enhanced lithium-ion battery. Nano-Micro Lett. 9, 41, doi:10.1007/s40820-017-0142-8 (2017).Google Scholar
Chan, C.K., Patel, R.N., O’Connell, M.J., Korgel, B.A., and Cui, Y.: Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4, 1443 (2010).Google Scholar
Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008).Google Scholar
Ge, M.Y., Rong, J.P., Fang, X., and Zhou, C.W.: Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318 (2012).Google Scholar
Hanrath, T. and Korgel, B.A.: Supercritical fluid–liquid–solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Adv. Mater. 15, 437 (2003).Google Scholar
Liu, N., Hu, L.B., McDowell, M.T., Jackson, A., and Cui, Y.: Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487 (2011).Google Scholar
Choi, J.W., Hu, L., Cui, L., McDonough, J.R., and Cui, Y.: Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries. J. Power Sources 195, 8311 (2010).Google Scholar
Etacheri, V., Haik, O., Goffer, Y., Roberts, G.A., Stefan, I.C., Fasching, R., and Aurbach, D.: Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 28, 965 (2012).Google Scholar
Rong, J.P., Fang, X., Ge, M.Y., Chen, H.T., Xu, J., and Zhou, C.W.: Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes. Nano Res. 6, 182 (2013).Google Scholar
Wu, H., Chan, G., Choi, J.W., Ryu, I., Yao, Y., McDowell, M.T., Lee, S.W., Jackson, A., Yang, Y., Hu, L.B., and Cui, Y.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310 (2012).Google Scholar
Ge, M.Y., Rong, J.P., Fang, X., Zhang, A.Y., Lu, Y.H., and Zhou, C.W.: Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 6, 174 (2013).CrossRefGoogle Scholar
Iwamura, S., Nishihara, H., and Kyotani, T.: Fast and reversible lithium storage in a wrinkled structure formed from Si nanoparticles during lithiation/delithiation cycling. J. Power Sources 222, 400 (2013).CrossRefGoogle Scholar
Lee, J.K., Smith, K.B., Hayner, C.M., and Kung, H.H.: Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem. Commun. 46, 2025 (2010).Google Scholar
Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., and Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522 (2012).Google Scholar
Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., and Yushin, G.: High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353 (2010).Google Scholar
Kim, Y.S., Kim, K.W., Cho, D., Hansen, N.S., Lee, J., and Joo, Y.L.: Silicon-rich carbon hybrid nanofibers from water-based spinning: The synergy between silicon and carbon for Li-ion battery anode application. ChemElectroChem. 1, 220 (2014).Google Scholar
Sun, W., Hu, R., Liu, H., Zeng, M., Yang, L., Wang, H., and Zhu, M.: Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries. J. Power Sources 268, 610 (2014).Google Scholar
Lin, Y.M., Klavetter, K.C., Abel, P.R., Davy, N.C., Snider, J.L., Heller, A., and Mullins, C.B.: High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chem. Commun. 48, 7268 (2012).Google Scholar
Nguyen, C.C. and Lucht, B.L.: Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries. J. Electrochem. Soc. 161, A1933 (2014).Google Scholar
Wang, W. and Kumta, P.N.: Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 4, 2233 (2010).Google Scholar
Wang, W. and Kumta, P.N.: Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. J. Power Sources 172, 650 (2007).Google Scholar
Smithyman, J., Moench, A., Liang, R., Zheng, J.P., Wang, B., and Zhang, C.: Binder-free composite electrodes using carbon nanotube networks as a host matrix for activated carbon microparticles. Appl. Phys. A 107, 723 (2012).Google Scholar
Cui, L.F., Hu, L.B., Choi, J.W., and Cui, Y.: Light-weight free-standing carbon nanotube–silicon films for anodes of lithium ion batteries. ACS Nano 4, 3671 (2010).Google Scholar
Landi, B.J., Cress, C.D., and Raffaelle, R.P.: High energy density lithium-ion batteries with carbon nanotube anodes. J. Mater. Res. 25, 1636 (2010).Google Scholar
Ng, S.H., Wang, J., Guo, Z.P., Chen, J., Wang, G.X., and Liu, H.K.: Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta 51, 23 (2005).Google Scholar
Landi, B.J., Ganter, M.J., Schauerman, C.M., Cress, C.D., and Raffaelle, R.P.: Lithium ion capacity of single wall carbon nanotube paper electrodes. J. Phys. Chem. C 112, 7509 (2008).Google Scholar
Chew, S.Y., Ng, S.H., Wang, J.Z., Novák, P., Krumeich, F., Chou, S.L., Chen, J., and Liu, H.K.: Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 47, 2976 (2009).Google Scholar
DiLeo, R.A., Frisco, S., Ganter, M.J., Rogers, R.E., Raffaelle, R.P., and Landi, B.J.: Hybrid germanium nanoparticle–single-wall carbon nanotube free-standing anodes for lithium ion batteries. J. Phys. Chem. C 115, 22609 (2011).Google Scholar
Hu, L.B., Wu, H., Mantia, F.L., Yang, Y., and Cui, Y.: Thin, flexible secondary Li-ion paper batteries. ACS Nano 4, 5843 (2010).Google Scholar
Forney, M.W., Ganter, M.J., Staub, J.W., Ridgley, R.D., and Landi, B.J.: Prelithiation of silicon–carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett. 13, 4158 (2013).Google Scholar
Forney, M.W., DiLeo, R.A., Raisanen, A., Ganter, M.J., Staub, J.W., Rogers, R.E., Ridgley, R.D., and Landi, B.J.: High performance silicon free-standing anodes fabricated by low-pressure and plasma-enhanced chemical vapor deposition onto carbon nanotube electrodes. J. Power Sources 228, 270 (2013).CrossRefGoogle Scholar
Chou, S.L., Zhao, Y., Wang, J.Z., Chen, Z.X., Liu, H.K., and Dou, S.X.: Silicon/single-walled carbon nanotube composite paper as a flexible anode material for lithium ion batteries. J. Phys. Chem. C 114, 15862 (2010).Google Scholar
Yue, L., Zhong, H., and Zhang, L.: Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process. Electrochim. Acta 76, 326 (2012).Google Scholar
Hu, L., Wu, H., Gao, Y., Cao, A., Li, H., McDough, J., Xie, X., Zhou, M., and Cui, Y.: Silicon–carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 1, 523 (2011).Google Scholar
Tao, H.C., Fan, L.Z., Mei, Y.F., and Qu, X.H.: Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries. Electrochem. Commun. 13, 1332 (2011).Google Scholar
Wang, J.Z., Zhong, C., Chou, S.L., and Liu, H.K.: Flexible free-standing graphene–silicon composite film for lithium-ion batteries. Electrochem. Commun. 12, 1467 (2010).Google Scholar
Hu, X., Jin, Y., Zhu, B., Tan, Y., Zhang, S., Zong, L., Lu, Z., and Zhu, J.: Free-standing graphene–encapsulated silicon nanoparticle aerogel as an anode for lithium ion batteries. ChemNanoMat 2, 671 (2016).Google Scholar
Li, B., Yang, S., Li, S., Wang, B., and Liu, J.: From commercial sponge toward 3D graphene–silicon networks for superior lithium storage. Adv. Energy Mater. 5, 1500289 (2015).CrossRefGoogle Scholar
Zhou, M., Li, X., Wang, B., Zhang, Y., Ning, J., Xiao, Z., Zhang, X., Chang, Y., and Zhi, L.: High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 15, 6222 (2015).CrossRefGoogle ScholarPubMed
Zhao, X., Hayner, C.M., Kung, M.C., and Kung, H.H.: In-plane vacancy-enabled high-power Si–graphene composite electrode for lithium-ion batteries. Adv. Energy Mater. 1, 1079 (2011).Google Scholar
Nan, D., Huang, Z-H., Lv, R., Lin, Y., Yang, L., Yu, X., Ye, L., Shen, W., Sun, H., and Kang, F.: Silicon-encapsulated hollow carbon nanofiber networks as binder-free anodes for lithium ion battery. J. Nanomater. 2014, 1 (2014).Google Scholar
Wang, M-S., Song, W-L., Wang, J., and Fan, L-Z.: Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. Carbon 82, 337 (2015).Google Scholar
Roy, A.K., Zhong, M., Schwab, M.G., Binder, A., Venkataraman, S.S., and Tomovic, Z.: Preparation of a binder-free three-dimensional carbon foam/silicon composite as potential material for lithium ion battery anodes. ACS Appl. Mater. Interfaces 8, 7343 (2016).Google Scholar
Yao, K., Liang, R., and Zheng, J.P.: Freestanding flexible Si nanoparticles–multiwalled carbon nanotubes composite anodes for Li-ion batteries and their prelithiation by stabilized Li metal powder. J. Electrochem. Energy Convers. Storage 13, 011004 (2016).Google Scholar
Choi, N-S., Yew, K.H., Lee, K.Y., Sung, M., Kim, H., and Kim, S-S.: Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources 161, 1254 (2006).Google Scholar
Wu, J.J. and Bennett, W.R.: Fundamental investigation of Si anode in Li-ion cells. In Proceedings of 2012 IEEE Energytech (IEEE, Cleveland, Ohio, 2012); pp. 1, doi: 10.1109/EnergyTech.2012.6304667.Google Scholar
Wang, Z.C., Xu, J., Yao, W.H., Yao, Y.W., and Yang, Y.: Fluoroethylene carbonate as an electrolyte additive for improving the performance of mesocarbon microbead electrode. ECS Trans. 41, 29 (2012).CrossRefGoogle Scholar
Favors, Z., Wang, W., Bay, H.H., George, A., Ozkan, M., and Ozkan, C.S.: Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries. Sci. Rep. 4, 1 (2014).Google Scholar
Obrovac, M.N. and Christensen, L.: Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93 (2004).Google Scholar
Obrovac, M.N. and Krause, L.J.: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103 (2007).Google Scholar
Li, J. and Dahn, J.R.: An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156 (2007).Google Scholar
Hatchard, T.D. and Dahn, J.R.: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838 (2004).Google Scholar
Saint, J., Morcrette, M., Larcher, D., Laffont, L., Beattie, S., Pérès, J.P., Talaga, D., Couzi, M., and Tarascon, J.M.: Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites. Adv. Funct. Mater. 17, 1765 (2007).Google Scholar
Nakahara, H., Yoon, S-Y., and Nutt, S.: Effect of an additive to polysiloxane-based electrolyte on passive film formation on a graphite electrode. J. Power Sources 158, 600 (2006).Google Scholar
Chen, L., Wang, K., Xie, X., and Xie, J.: Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J. Power Sources 174, 538 (2007).Google Scholar
Guo, Z., Zhao, Z., Liu, H., and Dou, S.: Electrochemical lithiation and de-lithiation of MWNT–Sn/SnNi nanocomposites. Carbon 43, 1392 (2005).Google Scholar
Zhang, Y., Zhang, X., Zhang, H., Zhao, Z., Li, F., Liu, C., and Cheng, H.: Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim. Acta 51, 4994 (2006).Google Scholar
Dokko, K., Fujita, Y., Mohamedi, M., Umeda, M., Uchida, I., and Selman, J.: Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part II. Disordered carbon. Electrochim. Acta 47, 933 (2001).Google Scholar
Supplementary material: File

Yao et al. supplementary material

Table S1

Download Yao et al. supplementary material(File)
File 28.7 KB