Skip to main content

Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system

  • Hamed Nosrati (a1), Elham Javani (a2), Marziyeh Salehiabar (a2), Hamidreza Kheiri Manjili (a3), Soodabeh Davaran (a4) and Hossein Danafar (a5)...

In this project, we described the production of chrysin-loaded L-phenyl alanine (Phe)-coated iron oxide magnetic nanoparticles (chrysin@Phe@IOMNs). chrysin@Phe@IOMNs were characterized by X-ray diffraction, thermogravimetric analysis, fourier transform infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy techniques. Next, hemocompatibility and biocompatibility of Phe-coated IOMNs were determined by hemolysis and MTT assays on HFF-2 and HEK-293 cell lines, respectively. Finally, the anticancer activity of chrysin@Phe@IOMNs was examined on MCF-7 cell line. The outcomes direct that as-prepared nanocarriers are nontoxic and biocompatible and also chrysin@Phe@IOMNs are appropriate for chrysin delivery and other hydrophobic therapeutic agents.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Babaie, S., Ghanbarzadeh, S., Davaran, S., Kouhsoltani, M., Hamishehkar, H.: Nanoethosomes for dermal delivery of Lidocaine. Adv. Pharm. Bull. 5, 549 (2015).
2.Nosrati, H., Sefidi, N., Sharafi, A., Danafar, H., and Manjili, H.K.: Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem. 76, 501 (2018).
3.Zheng, H., Li, S., Pu, Y., Lai, Y., He, B., and Gu, Z.: Nanoparticles generated by PEG-chrysin conjugates for efficient anticancer drug delivery. Eur. J. Pharm. Biopharm. 87, 454 (2014).
4.Cristescu, R., Visan, A., Socol, G., Surdu, A., Oprea, A., Grumezescu, A., Chifiriuc, M., Boehm, R., Yamaleyeva, D., and Taylor, M.: Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study. Appl. Surf. Sci. 374, 290 (2016).
5.Babu, K.S., Babu, T.H., Srinivas, P., Kishore, K.H., Murthy, U., and Rao, J.M.: Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg. Med. Chem. Lett. 16, 221 (2006).
6.Anari, E., Akbarzadeh, A., and Zarghami, N.: Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line. Artif. Cells, Nanomed., Biotechnol. 44, 1410 (2016).
7.Vatten, L.J. and Kvinnsland, S.: Prospective study of height, body mass index and risk of breast cancer. Acta Oncol. 31, 195 (1992).
8.Ursin, G., Longnecker, M.P., Haile, R.W., and Greenland, S.: A meta-analysis of body mass index and risk of premenopausal breast cancer. Epidemiology, 6, 137 (1995).
9.Matsumura, Y. and Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Part 1), 6387 (1986).
10.Ghanbarzadeh, S., Khorrami, A., Arami, S.: Preparation of optimized Naproxen nano liposomes using response surface methodology. J. Pharm. Inv. 44, 33 (2014).
11.Salehiabar, M., Nosrati, H., Javani, E., Aliakbarzadeh, F., Manjili, H.K., Davaran, S., and Danafar, H.: Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int. J. Biol. Macromol. 115, 83 (2018).
12.Ghanbarzadeh, S., Khorrami, A., Arami, S.: Nonionic surfactantbased vesicular system for transdermal drug delivery. Drug Deliv. 22, 1071 (2015).
13.Nosrati, H., Rashidi, N., Danafar, H., and Manjili, H.K.: Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J. Inorg. Organomet. Polym. Mater. 28, 1178 (2018).
14.Aberoumandi, S.M., Mohammadhosseini, M., Abasi, E., Saghati, S., Nikzamir, N., Akbarzadeh, A., Panahi, Y., and Davaran, S.: An update on applications of nanostructured drug delivery systems in cancer therapy: A review. Artif. Cells, Nanomed., Biotechnol. 45, 1058 (2017).
15.Ahmadkhani, L., Akbarzadeh, A., and Abbasian, M.: Development and characterization dual responsive magnetic nanocomposites for targeted drug delivery systems. Artif. Cells, Nanomed., Biotechnol. (2017). doi: 10.1080/21691401.2017.1360323.
16.Shaabani, A., Nosrati, H., and Seyyedhamzeh, M.: Cellulose@ Fe2O3 nanoparticle composites: Magnetically recyclable nanocatalyst for the synthesis of 3-aminoimidazo [1,2-a] pyridines. Res. Chem. Intermed. 41, 3719 (2015).
17.Shaabani, A., Boroujeni, M.B., and Laeini, M.S.: Copper(II) supported on magnetic chitosan: A green nanocatalyst for the synthesis of 2,4,6-triaryl pyridines by C–N bond cleavage of benzylamines. RSC Adv. 6, 27706 (2016).
18.Arami, H., Khandhar, A., Liggitt, D., and Krishnan, K.M.: In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44, 8576 (2015).
19.Mahmoudi, M., Serpooshan, V., and Laurent, S.: Engineered nanoparticles for biomolecular imaging. Nanoscale 3, 3007 (2011).
20.Pan, Y., Du, X., Zhao, F., and Xu, B.: Magnetic nanoparticles for the manipulation of proteins and cells. Chem. Soc. Rev. 41, 2912 (2012).
21.Salehiabar, M., Nosrati, H., Davaran, S., Danafar, H., and Manjili, H.K.: Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res. 68, 280 (2018).
22.Li, Z., Qiang, L., Zhong, S., Wang, H., and Cui, X.: Colloids and Surfaces A: Physicochemical and Engineering Aspects. 436, 1145 (2013).
23.Rostami, M., Aghajanzadeh, M., Zamani, M., Manjili, H.K., and Danafar, H.: Sono-chemical synthesis and characterization of Fe3O4@ mTiO2–GO nanocarriers for dual-targeted colon drug delivery. Res. Chem. Intermed. 44, 1889 (2018).
24.Martín, M., Salazar, P., Villalonga, R., Campuzano, S., Pingarrón, J.M., and González-Mora, J.L.: Preparation of core–shell Fe3O4@poly (dopamine) magnetic nanoparticles for biosensor construction. J. Mater. Chem. B 2, 739 (2014).
25.Sousa, M., Rubim, J., Sobrinho, P., and Tourinho, F.: Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. J. Magn. Magn. Mater. 225, 67 (2001).
26.Park, J.Y., Choi, E.S., Baek, M.J., and Lee, G.H.: Colloidal stability of amino acid coated magnetite nanoparticles in physiological fluid. Mater. Lett. 63, 379 (2009).
27.Patel, D., Chang, Y., and Lee, G.H.: Amino acid functionalized magnetite nanoparticles in saline solution. Curr. Appl. Phys. 9, S32 (2009).
28.Schwaminger, S.P., García, P.F., Merck, G.K., Bodensteiner, F.A., Heissler, S., Günther, S., and Berensmeier, S.: Nature of interactions of amino acids with bare magnetite nanoparticles. J. Phys. Chem. C 119, 23032 (2015).
29.Pušnik, K., Peterlin, M., Kralj-Cigic, I., Marolt, G., Kogej, K., Mertelj, A., Gyergyek, S., and Makovec, D.: Adsorption of amino acids, aspartic acid and lysine onto iron-oxide nanoparticles. J. Phys. Chem. C 120, 14372 (2016).
30.Nosrati, H., Salehiabar, M., Attari, E., Davaran, S., Danafar, H., and Manjili, H.K.: Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl. Organomet. Chem. 32, e4069 (2018).
31.Nosrati, H., Mojtahedi, A., Danafar, H., and Kheiri Manjili, H.: Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J. Biomed. Mater. Res., Part A 106, 1646 (2018).
32.Rahimi, M., Shojaei, S., Safa, K.D., Ghasemi, Z., Salehi, R., Yousefi, B., and Shafiei-Irannejad, V.: Biocompatible magnetic tris(2-aminoethyl) amine functionalized nanocrystalline cellulose as a novel nanocarrier for anticancer drug delivery of methotrexate. New J. Chem. 41, 2160 (2017).
33.Qu, H., Ma, H., Zhou, W., and O’Connor, C.J.: In situ surface functionalization of magnetic nanoparticles with hydrophilic natural amino acids. Inorg. Chim. Acta 389, 60 (2012).
34.Durmus, Z., Kavas, H., Toprak, M.S., Baykal, A., Altınçekiç, T.G., Aslan, A., Bozkurt, A., and Coşgun, S.: L-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. J. Alloys Compd. 484, 371 (2009).
35.Xie, J., Wang, J., Niu, G., Huang, J., Chen, K., Li, X., and Chen, X.: Human serum albumin coated iron oxide nanoparticles for efficient cell labeling. Chem. Commun. 46, 433 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed